DenseNet


import torch
model = torch.hub.load('pytorch/vision:v0.10.0', 'densenet121', pretrained=True)
# or any of these variants
# model = torch.hub.load('pytorch/vision:v0.10.0', 'densenet169', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.10.0', 'densenet201', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.10.0', 'densenet161', pretrained=True)
model.eval()
所有預訓練模型都要求輸入影像以相同的方式進行歸一化,即由形狀為 (3 x H x W) 的 3 通道 RGB 影像組成的小批次資料,其中 H 和 W 預計至少為 224。影像必須載入到 [0, 1] 範圍內,然後使用 mean = [0.485, 0.456, 0.406] 和 std = [0.229, 0.224, 0.225] 進行歸一化。
這是一個示例執行。
# Download an example image from the pytorch website
import urllib
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
try: urllib.URLopener().retrieve(url, filename)
except: urllib.request.urlretrieve(url, filename)
# sample execution (requires torchvision)
from PIL import Image
from torchvision import transforms
input_image = Image.open(filename)
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
# move the input and model to GPU for speed if available
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
with torch.no_grad():
output = model(input_batch)
# Tensor of shape 1000, with confidence scores over ImageNet's 1000 classes
print(output[0])
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
probabilities = torch.nn.functional.softmax(output[0], dim=0)
print(probabilities)
# Download ImageNet labels
!wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt
# Read the categories
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Show top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
print(categories[top5_catid[i]], top5_prob[i].item())
模型描述
密集卷積網路 (DenseNet) 以一種前饋方式將每個層連線到所有其他層。傳統的具有 L 層的卷積網路有 L 個連線——每個層與其後續層之間一個連線——而我們的網路有 L(L+1)/2 個直接連線。對於每個層,所有前一個層的特徵圖都被用作輸入,其自身的特徵圖被用作所有後續層的輸入。DenseNet 具有幾個引人注目的優點:它們緩解了梯度消失問題,加強了特徵傳播,鼓勵了特徵重用,並大大減少了引數數量。
下面列出了使用預訓練模型在 ImageNet 資料集上的 1-裁剪錯誤率。
| 模型結構 | Top-1 錯誤率 | Top-5 錯誤率 |
|---|---|---|
| densenet121 | 25.35 | 7.83 |
| densenet169 | 24.00 | 7.00 |
| densenet201 | 22.80 | 6.43 |
| densenet161 | 22.35 | 6.20 |
參考文獻