GhostNet

import torch
model = torch.hub.load('huawei-noah/ghostnet', 'ghostnet_1x', pretrained=True)
model.eval()

所有預訓練模型都要求輸入影像以相同的方式進行歸一化,即由形狀為 (3 x H x W) 的 3 通道 RGB 影像組成的小批次資料,其中 HW 預計至少為 224。影像必須載入到 [0, 1] 範圍內,然後使用 mean = [0.485, 0.456, 0.406]std = [0.229, 0.224, 0.225] 進行歸一化。

這是一個示例執行。

# Download an example image from the pytorch website
import urllib
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
try: urllib.URLopener().retrieve(url, filename)
except: urllib.request.urlretrieve(url, filename)
# sample execution (requires torchvision)
from PIL import Image
from torchvision import transforms
input_image = Image.open(filename)
preprocess = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model

# move the input and model to GPU for speed if available
if torch.cuda.is_available():
    input_batch = input_batch.to('cuda')
    model.to('cuda')

with torch.no_grad():
    output = model(input_batch)
# Tensor of shape 1000, with confidence scores over ImageNet's 1000 classes
print(output[0])
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
probabilities = torch.nn.functional.softmax(output[0], dim=0)
print(probabilities)
# Download ImageNet labels
!wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt
# Read the categories
with open("imagenet_classes.txt", "r") as f:
    categories = [s.strip() for s in f.readlines()]
# Show top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
    print(categories[top5_catid[i]], top5_prob[i].item())

模型描述

GhostNet 架構基於 Ghost 模組結構,該結構透過廉價操作生成更多特徵。基於一組內在特徵圖,應用一系列廉價操作來生成許多 Ghost 特徵圖,這些特徵圖可以充分揭示內在特徵中包含的資訊。在基準測試上進行的實驗表明,GhostNet 在速度和準確性權衡方面具有優越性。

以下列出了使用預訓練模型在 ImageNet 資料集上的相應準確性。

模型結構FLOPsTop-1 準確率Top-5 準確率
GhostNet 1.0x142M73.9891.46

參考文獻

您可以透過此連結閱讀完整論文。

@inproceedings{han2019ghostnet, title={GhostNet: More Features from Cheap Operations}, author={Kai Han and Yunhe Wang and Qi Tian and Jianyuan Guo and Chunjing Xu and Chang Xu}, booktitle={CVPR}, year={2020}, }

透過廉價操作生成更多特徵的高效網路

模型型別: 可指令碼化 | 視覺
提交者: 華為諾亞方舟實驗室