IBN-Net

import torch
model = torch.hub.load('XingangPan/IBN-Net', 'resnet50_ibn_a', pretrained=True)
model.eval()

所有預訓練模型都要求輸入影像以相同的方式進行歸一化,即由形狀為 (3 x H x W) 的 3 通道 RGB 影像組成的小批次資料,其中 HW 預計至少為 224。影像必須載入到 [0, 1] 範圍內,然後使用 mean = [0.485, 0.456, 0.406]std = [0.229, 0.224, 0.225] 進行歸一化。

這是一個示例執行。

# Download an example image from the pytorch website
import urllib
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
try: urllib.URLopener().retrieve(url, filename)
except: urllib.request.urlretrieve(url, filename)
# sample execution (requires torchvision)
from PIL import Image
from torchvision import transforms
input_image = Image.open(filename)
preprocess = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model

# move the input and model to GPU for speed if available
if torch.cuda.is_available():
    input_batch = input_batch.to('cuda')
    model.to('cuda')

with torch.no_grad():
    output = model(input_batch)
# Tensor of shape 1000, with confidence scores over ImageNet's 1000 classes
print(output[0])
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
probabilities = torch.nn.functional.softmax(output[0], dim=0)
print(probabilities)
# Download ImageNet labels
!wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt
# Read the categories
with open("imagenet_classes.txt", "r") as f:
    categories = [s.strip() for s in f.readlines()]
# Show top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
    print(categories[top5_catid[i]], top5_prob[i].item())

模型描述

IBN-Net是一種具有域/外觀不變性的CNN模型。受風格遷移工作的啟發,IBN-Net在一個深度網路中巧妙地統一了例項歸一化和批歸一化。它提供了一種簡單的方法,在不增加模型複雜性的情況下,同時提高建模和泛化能力。IBN-Net特別適用於跨域或人物/車輛再識別任務。

以下列出了使用預訓練模型在ImageNet資料集上的相應準確率。

模型名稱Top-1 準確率Top-5 準確率
resnet50_ibn_a77.4693.68
resnet101_ibn_a78.6194.41
resnext101_ibn_a79.1294.58
se_resnet101_ibn_a78.7594.49

以下列出了在兩個 Re-ID 基準資料集 Market1501 和 DukeMTMC-reID 上的 rank1/mAP(來自 michuanhaohao/reid-strong-baseline)。

骨幹網路Market1501DukeMTMC-reID
ResNet5094.5 (85.9)86.4 (76.4)
ResNet10194.5 (87.1)87.6 (77.6)
SeResNet5094.4 (86.3)86.4 (76.5)
SeResNet10194.6 (87.3)87.5 (78.0)
SeResNeXt5094.9 (87.6)88.0 (78.3)
SeResNeXt10195.0 (88.0)88.4 (79.0)
ResNet50-IBN-a95.0 (88.2)90.1 (79.1)

參考文獻

具有域/外觀不變性的網路

模型型別: 視覺
提交者: 潘興剛