Wide ResNet

import torch
# load WRN-50-2:
model = torch.hub.load('pytorch/vision:v0.10.0', 'wide_resnet50_2', pretrained=True)
# or WRN-101-2
model = torch.hub.load('pytorch/vision:v0.10.0', 'wide_resnet101_2', pretrained=True)
model.eval()

所有預訓練模型都要求輸入影像以相同的方式進行歸一化,即由形狀為 (3 x H x W) 的 3 通道 RGB 影像組成的小批次資料,其中 HW 預計至少為 224。影像必須載入到 [0, 1] 範圍內,然後使用 mean = [0.485, 0.456, 0.406]std = [0.229, 0.224, 0.225] 進行歸一化。

這是一個示例執行。

# Download an example image from the pytorch website
import urllib
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
try: urllib.URLopener().retrieve(url, filename)
except: urllib.request.urlretrieve(url, filename)
# sample execution (requires torchvision)
from PIL import Image
from torchvision import transforms
input_image = Image.open(filename)
preprocess = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model

# move the input and model to GPU for speed if available
if torch.cuda.is_available():
    input_batch = input_batch.to('cuda')
    model.to('cuda')

with torch.no_grad():
    output = model(input_batch)
# Tensor of shape 1000, with confidence scores over ImageNet's 1000 classes
print(output[0])
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
probabilities = torch.nn.functional.softmax(output[0], dim=0)
print(probabilities)
# Download ImageNet labels
!wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt
# Read the categories
with open("imagenet_classes.txt", "r") as f:
    categories = [s.strip() for s in f.readlines()]
# Show top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
    print(categories[top5_catid[i]], top5_prob[i].item())

模型描述

寬殘差網路(Wide Residual networks)與ResNet相比,僅僅增加了通道數量。否則,架構是相同的。使用瓶頸塊(bottleneck block)的更深層ImageNet模型在內部的3×3卷積中增加了通道數量。

wide_resnet50_2wide_resnet101_2 模型使用SGD和熱重啟(warm restarts)透過FP16混合精度訓練。檢查點的權重為半精度(批歸一化除外),以減小大小,並且也可以用於FP32模型。

模型結構Top-1 錯誤率Top-5 錯誤率# 引數
wide_resnet50_221.495.9168.9M
wide_resnet101_221.165.72126.9M

參考文獻

寬殘差網路

模型型別: 可指令碼化 | 視覺
提交人: Sergey Zagoruyko