RenameTransform¶
- class torchrl.envs.transforms.RenameTransform(in_keys, out_keys, in_keys_inv=None, out_keys_inv=None, create_copy=False)[source]¶
一個用於重新命名輸出 tensordict (或透過逆向鍵重新命名輸入 tensordict) 中條目的變換。
- 引數:
in_keys (sequence of NestedKey) – 待重新命名的條目。
out_keys (sequence of NestedKey) – 重新命名後的條目名稱。
in_keys_inv (sequence of NestedKey, optional) – 在輸入 tensordict 中待重新命名的條目,這些條目將傳遞給
EnvBase._step()。out_keys_inv (sequence of NestedKey, optional) – 在輸入 tensordict 中重新命名後的條目名稱。
create_copy (bool, optional) – 如果為
True,則將條目複製一份並使用不同的名稱,而不是直接重新命名。這允許重新命名不可變條目,如"reward"和"done"。
示例
>>> from torchrl.envs.libs.gym import GymEnv >>> env = TransformedEnv( ... GymEnv("Pendulum-v1"), ... RenameTransform(["observation", ], ["stuff",], create_copy=False), ... ) >>> tensordict = env.rollout(3) >>> print(tensordict) TensorDict( fields={ action: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.float32, is_shared=False), done: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False), next: TensorDict( fields={ done: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False), reward: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.float32, is_shared=False), stuff: Tensor(shape=torch.Size([3, 3]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3]), device=cpu, is_shared=False), stuff: Tensor(shape=torch.Size([3, 3]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3]), device=cpu, is_shared=False) >>> # if the output is also an input, we need to rename if both ways: >>> from torchrl.envs.libs.brax import BraxEnv >>> env = TransformedEnv( ... BraxEnv("fast"), ... RenameTransform(["state"], ["newname"], ["state"], ["newname"]) ... ) >>> _ = env.set_seed(1) >>> tensordict = env.rollout(3) >>> assert "newname" in tensordict.keys() >>> assert "state" not in tensordict.keys()
- forward(tensordict: TensorDictBase) TensorDictBase¶
讀取輸入 tensordict,並對選定的鍵應用變換。
- transform_input_spec(input_spec: Composite) Composite[source]¶
變換輸入規格,使得到的規格與變換對映匹配。
- 引數:
input_spec (TensorSpec) – 變換前的規格
- 返回值:
變換後預期的規格