MultiStepActorWrapper¶
- class torchrl.modules.tensordict_module.MultiStepActorWrapper(*args, **kwargs)[源]¶
一個多動作 actor 的封裝器。
此類允許在環境中執行宏(macros)。actor 的動作(action)條目必須包含一個額外的時間維度才能被使用。它必須緊鄰輸入 tensordict 的最後一個維度(即在
tensordict.ndim處)。如果未提供動作(action)條目鍵,將使用簡單的啟發式方法從 actor 自動檢索(任何以字串
"action"結尾的巢狀鍵)。輸入 tensordict 中還必須存在一個
"is_init"條目,用於跟蹤當前收集應何時因遇到“完成”狀態而中斷。與action_keys不同,此鍵必須是唯一的。- 引數:
actor (TensorDictModuleBase) – 一個 actor。
n_steps (int) – actor 一次輸出的動作數量(前瞻視窗)。
- 關鍵字引數:
action_keys (list of NestedKeys, 可選) – 來自環境的動作(action)鍵。可以從
env.action_keys中檢索。預設為actor的所有以字串"action"結尾的out_keys。init_key (NestedKey, 可選) – 指示環境何時經歷重置的條目鍵。預設為
"is_init",這是來自InitTracker變換的out_key。
示例
>>> import torch.nn >>> from torchrl.modules.tensordict_module.actors import MultiStepActorWrapper, Actor >>> from torchrl.envs import CatFrames, GymEnv, TransformedEnv, SerialEnv, InitTracker, Compose >>> from tensordict.nn import TensorDictSequential as Seq, TensorDictModule as Mod >>> >>> time_steps = 6 >>> n_obs = 4 >>> n_action = 2 >>> batch = 5 >>> >>> # Transforms a CatFrames in a stack of frames >>> def reshape_cat(data: torch.Tensor): ... return data.unflatten(-1, (time_steps, n_obs)) >>> # an actor that reads `time_steps` frames and outputs one action per frame >>> # (actions are conditioned on the observation of `time_steps` in the past) >>> actor_base = Seq( ... Mod(reshape_cat, in_keys=["obs_cat"], out_keys=["obs_cat_reshape"]), ... Mod(torch.nn.Linear(n_obs, n_action), in_keys=["obs_cat_reshape"], out_keys=["action"]) ... ) >>> # Wrap the actor to dispatch the actions >>> actor = MultiStepActorWrapper(actor_base, n_steps=time_steps) >>> >>> env = TransformedEnv( ... SerialEnv(batch, lambda: GymEnv("CartPole-v1")), ... Compose( ... InitTracker(), ... CatFrames(N=time_steps, in_keys=["observation"], out_keys=["obs_cat"], dim=-1) ... ) ... ) >>> >>> print(env.rollout(100, policy=actor, break_when_any_done=False)) TensorDict( fields={ action: Tensor(shape=torch.Size([5, 100, 2]), device=cpu, dtype=torch.float32, is_shared=False), action_orig: Tensor(shape=torch.Size([5, 100, 6, 2]), device=cpu, dtype=torch.float32, is_shared=False), counter: Tensor(shape=torch.Size([5, 100, 1]), device=cpu, dtype=torch.int32, is_shared=False), done: Tensor(shape=torch.Size([5, 100, 1]), device=cpu, dtype=torch.bool, is_shared=False), is_init: Tensor(shape=torch.Size([5, 100, 1]), device=cpu, dtype=torch.bool, is_shared=False), next: TensorDict( fields={ done: Tensor(shape=torch.Size([5, 100, 1]), device=cpu, dtype=torch.bool, is_shared=False), is_init: Tensor(shape=torch.Size([5, 100, 1]), device=cpu, dtype=torch.bool, is_shared=False), obs_cat: Tensor(shape=torch.Size([5, 100, 24]), device=cpu, dtype=torch.float32, is_shared=False), observation: Tensor(shape=torch.Size([5, 100, 4]), device=cpu, dtype=torch.float32, is_shared=False), reward: Tensor(shape=torch.Size([5, 100, 1]), device=cpu, dtype=torch.float32, is_shared=False), terminated: Tensor(shape=torch.Size([5, 100, 1]), device=cpu, dtype=torch.bool, is_shared=False), truncated: Tensor(shape=torch.Size([5, 100, 1]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([5, 100]), device=cpu, is_shared=False), obs_cat: Tensor(shape=torch.Size([5, 100, 24]), device=cpu, dtype=torch.float32, is_shared=False), observation: Tensor(shape=torch.Size([5, 100, 4]), device=cpu, dtype=torch.float32, is_shared=False), terminated: Tensor(shape=torch.Size([5, 100, 1]), device=cpu, dtype=torch.bool, is_shared=False), truncated: Tensor(shape=torch.Size([5, 100, 1]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([5, 100]), device=cpu, is_shared=False)
- forward(tensordict: TensorDictBase) TensorDictBase[源]¶
定義每次呼叫時執行的計算。
應由所有子類重寫。
注意
儘管前向傳播(forward pass)的實現需要在該函式內定義,但之後應呼叫
Module例項而非此函式,因為前者會負責執行註冊的 hook,而後者會靜默忽略它們。
- property init_key: NestedKey¶
批處理中給定元素的初始步驟指示器。