DDPGLoss¶
- class torchrl.objectives.DDPGLoss(*args, **kwargs)[source]¶
DDPG Loss 類。
- 引數:
actor_network (TensorDictModule) – 策略運算元。
value_network (TensorDictModule) – Q 值運算元。
loss_function (str) – 值差異的損失函式。可以是 “l1”, “l2” 或 “smooth_l1” 之一。
delay_actor (bool, optional) – 是否將目標 Actor 網路與用於資料收集的 Actor 網路分開。預設為
False。delay_value (bool, optional) – 是否將目標 Value 網路與用於資料收集的 Value 網路分開。預設為
True。separate_losses (bool, optional) – 如果為
True,策略和批評家之間的共享引數將只通過策略損失進行訓練。預設為False,即梯度會同時傳播到策略和批評家損失的共享引數。reduction (str, optional) – 指定應用於輸出的約簡方式:
"none"|"mean"|"sum"。"none":不應用約簡,"mean":輸出的總和將除以輸出中的元素數量,"sum":輸出將被求和。預設值:"mean"。
示例
>>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.tensordict_module.actors import Actor, ValueOperator >>> from torchrl.objectives.ddpg import DDPGLoss >>> from tensordict import TensorDict >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> actor = Actor(spec=spec, module=nn.Linear(n_obs, n_act)) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> value = ValueOperator( ... module=module, ... in_keys=["observation", "action"]) >>> loss = DDPGLoss(actor, value) >>> batch = [2, ] >>> data = TensorDict({ ... "observation": torch.randn(*batch, n_obs), ... "action": spec.rand(batch), ... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "reward"): torch.randn(*batch, 1), ... ("next", "observation"): torch.randn(*batch, n_obs), ... }, batch) >>> loss(data) TensorDict( fields={ loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), pred_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), pred_value_max: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), target_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), target_value_max: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
此類也相容非基於 TensorDict 的模組,並且可以在不依賴任何 TensorDict 相關原語的情況下使用。在這種情況下,預期的關鍵字引數是:
["next_reward", "next_done", "next_terminated"]+ actor_network 和 value_network 的 in_keys。返回值為一個張量元組,順序如下:["loss_actor", "loss_value", "pred_value", "target_value", "pred_value_max", "target_value_max"]示例
>>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.tensordict_module.actors import Actor, ValueOperator >>> from torchrl.objectives.ddpg import DDPGLoss >>> _ = torch.manual_seed(42) >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> actor = Actor(spec=spec, module=nn.Linear(n_obs, n_act)) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> value = ValueOperator( ... module=module, ... in_keys=["observation", "action"]) >>> loss = DDPGLoss(actor, value) >>> loss_actor, loss_value, pred_value, target_value, pred_value_max, target_value_max = loss( ... observation=torch.randn(n_obs), ... action=spec.rand(), ... next_done=torch.zeros(1, dtype=torch.bool), ... next_terminated=torch.zeros(1, dtype=torch.bool), ... next_observation=torch.randn(n_obs), ... next_reward=torch.randn(1)) >>> loss_actor.backward()
輸出鍵也可以使用
DDPGLoss.select_out_keys()方法進行過濾。示例
>>> loss.select_out_keys('loss_actor', 'loss_value') >>> loss_actor, loss_value = loss( ... observation=torch.randn(n_obs), ... action=spec.rand(), ... next_done=torch.zeros(1, dtype=torch.bool), ... next_terminated=torch.zeros(1, dtype=torch.bool), ... next_observation=torch.randn(n_obs), ... next_reward=torch.randn(1)) >>> loss_actor.backward()
- default_keys¶
的別名
_AcceptedKeys
- forward(tensordict: TensorDictBase = None) TensorDict[source]¶
給定從重放緩衝區取樣的 TensorDict,計算 DDPG loss。
- 此函式還將寫入一個 “td_error” 鍵,優先重放緩衝區可以使用它來為 TensorDict
中的項分配優先順序。
- 引數:
tensordict (TensorDictBase) – 包含鍵 [“done”, “terminated”, “reward”] 以及 Actor 和 Value 網路 in_keys 的 TensorDict。
- 返回:
包含 DDPG loss 的兩個張量元組。
- make_value_estimator(value_type: Optional[ValueEstimators] = None, **hyperparams)[source]¶
值函式構造器。
如果需要非預設值函式,必須使用此方法構建它。
- 引數:
value_type (ValueEstimators) – 一個
ValueEstimators列舉型別,指示要使用的值函式。如果未提供,將使用儲存在default_value_estimator屬性中的預設值。生成的值估計器類將註冊到self.value_type中,以便將來進行改進。**hyperparams – 用於值函式的超引數。如果未提供,將使用
default_value_kwargs()指示的值。
示例
>>> from torchrl.objectives import DQNLoss >>> # initialize the DQN loss >>> actor = torch.nn.Linear(3, 4) >>> dqn_loss = DQNLoss(actor, action_space="one-hot") >>> # updating the parameters of the default value estimator >>> dqn_loss.make_value_estimator(gamma=0.9) >>> dqn_loss.make_value_estimator( ... ValueEstimators.TD1, ... gamma=0.9) >>> # if we want to change the gamma value >>> dqn_loss.make_value_estimator(dqn_loss.value_type, gamma=0.9)