REDQLoss¶
- class torchrl.objectives.REDQLoss(*args, **kwargs)[原始碼]¶
REDQ 損失模組。
REDQ (RANDOMIZED ENSEMBLED DOUBLE Q-LEARNING: LEARNING FAST WITHOUT A MODEL https://openreview.net/pdf?id=AY8zfZm0tDd) 推廣了使用 Q 值函式整合來訓練類似 SAC 演算法的思想。
- 引數:
actor_network (TensorDictModule) – 待訓練的 actor
qvalue_network (TensorDictModule) –
單個 Q 值網路或 Q 值網路列表。如果提供單個 qvalue_network 例項,它將被複制
num_qvalue_nets次。如果傳遞模組列表,它們的引數將被堆疊,除非它們共享相同的身份(在這種情況下,原始引數將被擴充套件)。警告
如果傳遞引數列表,則 __不會__ 與策略引數進行比較,所有引數將被視為非繫結狀態。
- 關鍵字引數:
num_qvalue_nets (int, optional) – 待訓練的 Q 值網路數量。預設值為
10。sub_sample_len (int, optional) – 用於評估下一狀態值的 Q 值網路子取樣數量。預設值為
2。loss_function (str, optional) – 用於 Q 值的損失函式。可以是
"smooth_l1","l2","l1"之一。預設值為"smooth_l1"。alpha_init (
float, optional) – 初始熵乘數。預設值為1.0。min_alpha (
float, optional) – alpha 的最小值。預設值為0.1。max_alpha (
float, optional) – alpha 的最大值。預設值為10.0。action_spec (TensorSpec, optional) – 動作張量規範。如果未提供且目標熵為
"auto",將從 actor 中檢索。fixed_alpha (bool, optional) – alpha 是否應訓練以匹配目標熵。預設值為
False。target_entropy (Union[str, Number], optional) – 隨機策略的目標熵。預設值為 "auto"。
delay_qvalue (bool, optional) – 是否將目標 Q 值網路與用於資料收集的 Q 值網路分開。預設值為
False。gSDE (bool, optional) – 瞭解是否使用 gSDE 對於建立隨機噪聲變數是必要的。預設值為
False。priority_key (str, optional) – [已棄用,請改用 .set_keys()] 用於寫入優先順序回放緩衝區優先順序值的鍵。預設值為
"td_error"。separate_losses (bool, optional) – 如果為
True,則策略和 critic 之間共享的引數將僅在策略損失上進行訓練。預設為False,即梯度會傳播到共享引數以用於策略和 critic 損失。reduction (str, optional) – 指定應用於輸出的歸約方式:
"none"|"mean"|"sum"。"none":不應用歸約;"mean":輸出的總和將除以輸出元素的數量;"sum":輸出將被求和。預設值:"mean"。
示例
>>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.redq import REDQLoss >>> from tensordict import TensorDict >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor()) >>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"]) >>> actor = ProbabilisticActor( ... module=module, ... in_keys=["loc", "scale"], ... spec=spec, ... distribution_class=TanhNormal) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> qvalue = ValueOperator( ... module=module, ... in_keys=['observation', 'action']) >>> loss = REDQLoss(actor, qvalue) >>> batch = [2, ] >>> action = spec.rand(batch) >>> data = TensorDict({ ... "observation": torch.randn(*batch, n_obs), ... "action": action, ... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "reward"): torch.randn(*batch, 1), ... ("next", "observation"): torch.randn(*batch, n_obs), ... }, batch) >>> loss(data) TensorDict( fields={ action_log_prob_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), next.state_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), state_action_value_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), target_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
此類也相容非 TensorDict 的模組,無需使用任何與 TensorDict 相關的原始型別。在這種情況下,預期的關鍵字引數是:
["action", "next_reward", "next_done", "next_terminated"]+ actor 和 qvalue 網路的in_keys。返回值是以下順序的張量元組:["loss_actor", "loss_qvalue", "loss_alpha", "alpha", "entropy", "state_action_value_actor", "action_log_prob_actor", "next.state_value", "target_value",]。示例
>>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.redq import REDQLoss >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor()) >>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"]) >>> actor = ProbabilisticActor( ... module=module, ... in_keys=["loc", "scale"], ... spec=spec, ... distribution_class=TanhNormal) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> qvalue = ValueOperator( ... module=module, ... in_keys=['observation', 'action']) >>> loss = REDQLoss(actor, qvalue) >>> batch = [2, ] >>> action = spec.rand(batch) >>> # filter output keys to "loss_actor", and "loss_qvalue" >>> _ = loss.select_out_keys("loss_actor", "loss_qvalue") >>> loss_actor, loss_qvalue = loss( ... observation=torch.randn(*batch, n_obs), ... action=action, ... next_done=torch.zeros(*batch, 1, dtype=torch.bool), ... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool), ... next_reward=torch.randn(*batch, 1), ... next_observation=torch.randn(*batch, n_obs)) >>> loss_actor.backward()
- default_keys¶
_AcceptedKeys 的別名
- forward(tensordict: TensorDictBase = None) TensorDictBase[原始碼]¶
它旨在讀取輸入的 TensorDict 並返回另一個包含以“loss*”命名的損失鍵的 tensordict。
將損失拆分為其組成部分後,訓練器可以使用它們來記錄整個訓練過程中的各種損失值。輸出 tensordict 中存在的其他標量值也會被記錄。
- 引數:
tensordict — 包含計算損失所需值的輸入 tensordict。
- 返回值:
一個沒有批處理維度的新 tensordict,包含各種將命名為“loss*”的損失標量。損失必須以此名稱返回,因為它們將在反向傳播之前被訓練器讀取,這一點至關重要。
- make_value_estimator(value_type: Optional[ValueEstimators] = None, **hyperparams)[原始碼]¶
值函式構造器。
如果需要非預設值函式,則必須使用此方法構建它。
- 引數:
value_type (ValueEstimators) — 指示要使用的值函式的
ValueEstimators列舉型別。如果未提供,將使用儲存在default_value_estimator屬性中的預設值。生成的值估計器類將被註冊到self.value_type中,以便將來進行細化。**hyperparams — 用於值函式的超引數。如果未提供,將使用由
default_value_kwargs()指示的值。
示例
>>> from torchrl.objectives import DQNLoss >>> # initialize the DQN loss >>> actor = torch.nn.Linear(3, 4) >>> dqn_loss = DQNLoss(actor, action_space="one-hot") >>> # updating the parameters of the default value estimator >>> dqn_loss.make_value_estimator(gamma=0.9) >>> dqn_loss.make_value_estimator( ... ValueEstimators.TD1, ... gamma=0.9) >>> # if we want to change the gamma value >>> dqn_loss.make_value_estimator(dqn_loss.value_type, gamma=0.9)