Conv3d¶
- 類 torch.ao.nn.quantized.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)[source][source]¶
對由多個量化輸入平面組成的量化輸入訊號應用 3D 卷積。
有關輸入引數、引數和實現的詳細資訊,請參閱
Conv3d。注意
padding_mode引數僅支援 zeros。注意
輸入資料型別僅支援 torch.quint8。
- 變數
有關其他屬性,請參閱
Conv3d。示例
>>> # With square kernels and equal stride >>> m = nn.quantized.Conv3d(16, 33, 3, stride=2) >>> # non-square kernels and unequal stride and with padding >>> m = nn.quantized.Conv3d(16, 33, (3, 5, 5), stride=(1, 2, 2), padding=(1, 2, 2)) >>> # non-square kernels and unequal stride and with padding and dilation >>> m = nn.quantized.Conv3d(16, 33, (3, 5, 5), stride=(1, 2, 2), padding=(1, 2, 2), dilation=(1, 2, 2)) >>> input = torch.randn(20, 16, 56, 56, 56) >>> # quantize input to quint8 >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) >>> output = m(q_input)