fuse_modules¶
- class torch.ao.quantization.fuse_modules.fuse_modules(model, modules_to_fuse, inplace=False, fuser_func=<function fuse_known_modules>, fuse_custom_config_dict=None)[原始碼][原始碼]¶
將模組列表融合成單個模組。
僅融合以下模組序列:conv, bn;conv, bn, relu;conv, relu;linear, relu;bn, relu。所有其他序列保持不變。對於這些序列,將列表中的第一個專案替換為融合後的模組,將剩餘模組替換為 identity 模組。
- 引數
model – 包含待融合模組的模型
modules_to_fuse – 待融合的模組名稱列表的列表。如果只有單個模組列表需要融合,也可以是字串列表。
inplace – 布林值,指定是否在模型上原地進行融合,預設情況下返回新模型
fuser_func – 接受一個模組列表並輸出等長融合模組列表的函式。例如,fuser_func([convModule, BNModule]) 返回列表 [ConvBNModule, nn.Identity()]。預設為 torch.ao.quantization.fuse_known_modules
fuse_custom_config_dict – 融合的自定義配置
# Example of fuse_custom_config_dict fuse_custom_config_dict = { # Additional fuser_method mapping "additional_fuser_method_mapping": { (torch.nn.Conv2d, torch.nn.BatchNorm2d): fuse_conv_bn }, }
- 返回
包含融合模組的模型。如果 inplace=True,則建立新的副本。
示例
>>> m = M().eval() >>> # m is a module containing the sub-modules below >>> modules_to_fuse = [ ['conv1', 'bn1', 'relu1'], ['submodule.conv', 'submodule.relu']] >>> fused_m = torch.ao.quantization.fuse_modules(m, modules_to_fuse) >>> output = fused_m(input) >>> m = M().eval() >>> # Alternately provide a single list of modules to fuse >>> modules_to_fuse = ['conv1', 'bn1', 'relu1'] >>> fused_m = torch.ao.quantization.fuse_modules(m, modules_to_fuse) >>> output = fused_m(input)