快捷方式

TorchScript 內建函式

這是 TorchScript 中可訪問的函式和 Tensor 方法的完整參考。

支援的 Tensor 方法

Tensor.__and__(other : number) -> Tensor

Tensor.__and__(other : Tensor) -> Tensor

Tensor.__iand__(other : Tensor) -> Tensor

Tensor.__iand__(other : number) -> Tensor

Tensor.__ilshift__(other : Tensor) -> Tensor

Tensor.__ilshift__(other : number) -> Tensor

Tensor.__ior__(other : Tensor) -> Tensor

Tensor.__ior__(other : number) -> Tensor

Tensor.__irshift__(other : Tensor) -> Tensor

Tensor.__irshift__(other : number) -> Tensor

Tensor.__ixor__(other : Tensor) -> Tensor

Tensor.__ixor__(other : number) -> Tensor

Tensor.__lshift__(other : Tensor) -> Tensor

Tensor.__lshift__(other : number) -> Tensor

Tensor.__lshift__(other : number,
                  out : Tensor) -> Tensor

Tensor.__lshift__(other : Tensor,
                  out : Tensor) -> Tensor

Tensor.__or__(other : Tensor) -> Tensor

Tensor.__or__(other : number) -> Tensor

Tensor.__rshift__(other : Tensor) -> Tensor

Tensor.__rshift__(other : number) -> Tensor

Tensor.__rshift__(other : number,
                  out : Tensor) -> Tensor

Tensor.__rshift__(other : Tensor,
                  out : Tensor) -> Tensor

Tensor.__xor__(other : Tensor) -> Tensor

Tensor.__xor__(other : number) -> Tensor

Tensor.abs() -> Tensor

Tensor.abs(out : Tensor) -> Tensor

Tensor.abs_() -> Tensor

Tensor.absolute() -> Tensor

Tensor.absolute(out : Tensor) -> Tensor

Tensor.absolute_() -> Tensor

Tensor.acos() -> Tensor

Tensor.acos(out : Tensor) -> Tensor

Tensor.acos_() -> Tensor

Tensor.acosh() -> Tensor

Tensor.acosh(out : Tensor) -> Tensor

Tensor.acosh_() -> Tensor

Tensor.add(other : Tensor,
           alpha : number=1) -> Tensor

Tensor.add(other : number,
           alpha : number=1) -> Tensor

Tensor.add(other : Tensor,
           alpha : number=1,
           out : Tensor) -> Tensor

Tensor.add(other : number,
           alpha : number=1,
           out : Tensor) -> Tensor

Tensor.add_(other : Tensor,
            alpha : number=1) -> Tensor

Tensor.add_(other : number,
            alpha : number=1) -> Tensor

Tensor.addbmm(batch1 : Tensor,
              batch2 : Tensor,
              beta : number=1,
              alpha : number=1) -> Tensor

Tensor.addbmm(batch1 : Tensor,
              batch2 : Tensor,
              beta : number=1,
              alpha : number=1,
              out : Tensor) -> Tensor

Tensor.addbmm_(batch1 : Tensor,
               batch2 : Tensor,
               beta : number=1,
               alpha : number=1) -> Tensor

Tensor.addcdiv(tensor1 : Tensor,
               tensor2 : Tensor,
               value : number=1) -> Tensor

Tensor.addcdiv(tensor1 : Tensor,
               tensor2 : Tensor,
               value : number=1,
               out : Tensor) -> Tensor

Tensor.addcdiv_(tensor1 : Tensor,
                tensor2 : Tensor,
                value : number=1) -> Tensor

Tensor.addcmul(tensor1 : Tensor,
               tensor2 : Tensor,
               value : number=1) -> Tensor

Tensor.addcmul(tensor1 : Tensor,
               tensor2 : Tensor,
               value : number=1,
               out : Tensor) -> Tensor

Tensor.addcmul_(tensor1 : Tensor,
                tensor2 : Tensor,
                value : number=1) -> Tensor

Tensor.addmm(mat1 : Tensor,
             mat2 : Tensor,
             beta : number=1,
             alpha : number=1) -> Tensor

Tensor.addmm(mat1 : Tensor,
             mat2 : Tensor,
             beta : number=1,
             alpha : number=1,
             out : Tensor) -> Tensor

Tensor.addmm_(mat1 : Tensor,
              mat2 : Tensor,
              beta : number=1,
              alpha : number=1) -> Tensor

Tensor.addmv(mat : Tensor,
             vec : Tensor,
             beta : number=1,
             alpha : number=1) -> Tensor

Tensor.addmv(mat : Tensor,
             vec : Tensor,
             beta : number=1,
             alpha : number=1,
             out : Tensor) -> Tensor

Tensor.addmv_(mat : Tensor,
              vec : Tensor,
              beta : number=1,
              alpha : number=1) -> Tensor

Tensor.addr(vec1 : Tensor,
            vec2 : Tensor,
            beta : number=1,
            alpha : number=1) -> Tensor

Tensor.addr(vec1 : Tensor,
            vec2 : Tensor,
            beta : number=1,
            alpha : number=1,
            out : Tensor) -> Tensor

Tensor.addr_(vec1 : Tensor,
             vec2 : Tensor,
             beta : number=1,
             alpha : number=1) -> Tensor

Tensor.adjoint() -> Tensor

Tensor.align_as(other : Tensor) -> Tensor

Tensor.align_to(names : List[str]) -> Tensor

Tensor.align_to(order : List[str],
                ellipsis_idx : int) -> Tensor

Tensor.all() -> Tensor

Tensor.all(dim : int,
           keepdim : bool=False) -> Tensor

Tensor.all(dim : Optional[List[int]],
           keepdim : bool=False) -> Tensor

Tensor.all(dim : int,
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.all(dim : Optional[List[int]],
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.all(out : Tensor) -> Tensor

Tensor.all(dim : str,
           keepdim : bool=False) -> Tensor

Tensor.all(dim : str,
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.allclose(other : Tensor,
                rtol : float=1e-05,
                atol : float=1e-08,
                equal_nan : bool=False) -> bool

Tensor.amax(dim : List[int]=[],
            keepdim : bool=False) -> Tensor

Tensor.amax(dim : List[int]=[],
            keepdim : bool=False,
            out : Tensor) -> Tensor

Tensor.amin(dim : List[int]=[],
            keepdim : bool=False) -> Tensor

Tensor.amin(dim : List[int]=[],
            keepdim : bool=False,
            out : Tensor) -> Tensor

Tensor.aminmax(dim : Optional[int],
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.aminmax(dim : Optional[int],
               keepdim : bool=False,
               min : Tensor,
               max : Tensor) -> Tuple[Tensor, Tensor]

Tensor.angle() -> Tensor

Tensor.angle(out : Tensor) -> Tensor

Tensor.any() -> Tensor

Tensor.any(dim : int,
           keepdim : bool=False) -> Tensor

Tensor.any(dim : Optional[List[int]],
           keepdim : bool=False) -> Tensor

Tensor.any(dim : int,
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.any(dim : Optional[List[int]],
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.any(out : Tensor) -> Tensor

Tensor.any(dim : str,
           keepdim : bool=False) -> Tensor

Tensor.any(dim : str,
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.arccos() -> Tensor

Tensor.arccos(out : Tensor) -> Tensor

Tensor.arccos_() -> Tensor

Tensor.arccosh() -> Tensor

Tensor.arccosh(out : Tensor) -> Tensor

Tensor.arccosh_() -> Tensor

Tensor.arcsin() -> Tensor

Tensor.arcsin(out : Tensor) -> Tensor

Tensor.arcsin_() -> Tensor

Tensor.arcsinh() -> Tensor

Tensor.arcsinh(out : Tensor) -> Tensor

Tensor.arcsinh_() -> Tensor

Tensor.arctan() -> Tensor

Tensor.arctan(out : Tensor) -> Tensor

Tensor.arctan2(other : Tensor) -> Tensor

Tensor.arctan2(other : Tensor,
               out : Tensor) -> Tensor

Tensor.arctan2_(other : Tensor) -> Tensor

Tensor.arctan_() -> Tensor

Tensor.arctanh() -> Tensor

Tensor.arctanh(out : Tensor) -> Tensor

Tensor.arctanh_() -> Tensor

Tensor.argmax(dim : Optional[int],
              keepdim : bool=False) -> Tensor

Tensor.argmax(dim : Optional[int],
              keepdim : bool=False,
              out : Tensor) -> Tensor

Tensor.argmin(dim : Optional[int],
              keepdim : bool=False) -> Tensor

Tensor.argmin(dim : Optional[int],
              keepdim : bool=False,
              out : Tensor) -> Tensor

Tensor.argsort(dim : int=-1,
               descending : bool=False) -> Tensor

Tensor.argsort(stable : bool,
               dim : int=-1,
               descending : bool=False) -> Tensor

Tensor.argsort(stable : bool,
               dim : int=-1,
               descending : bool=False,
               out : Tensor) -> Tensor

Tensor.argsort(dim : str,
               descending : bool=False) -> Tensor

Tensor.argwhere() -> Tensor

Tensor.as_strided(size : List[int],
                  stride : List[int],
                  storage_offset : Optional[int]) -> Tensor

Tensor.as_strided_(size : List[int],
                   stride : List[int],
                   storage_offset : Optional[int]) -> Tensor

Tensor.as_strided_scatter(src : Tensor,
                          size : List[int],
                          stride : List[int],
                          storage_offset : Optional[int]) -> Tensor

Tensor.as_strided_scatter(src : Tensor,
                          size : List[int],
                          stride : List[int],
                          storage_offset : Optional[int],
                          out : Tensor) -> Tensor

Tensor.asin() -> Tensor

Tensor.asin(out : Tensor) -> Tensor

Tensor.asin_() -> Tensor

Tensor.asinh() -> Tensor

Tensor.asinh(out : Tensor) -> Tensor

Tensor.asinh_() -> Tensor

Tensor.atan() -> Tensor

Tensor.atan(out : Tensor) -> Tensor

Tensor.atan2(other : Tensor) -> Tensor

Tensor.atan2(other : Tensor,
             out : Tensor) -> Tensor

Tensor.atan2_(other : Tensor) -> Tensor

Tensor.atan_() -> Tensor

Tensor.atanh() -> Tensor

Tensor.atanh(out : Tensor) -> Tensor

Tensor.atanh_() -> Tensor

Tensor.backward(gradient : Optional[Tensor],
                retain_graph : Optional[bool],
                create_graph : bool=False) -> Tuple[]

Tensor.baddbmm(batch1 : Tensor,
               batch2 : Tensor,
               beta : number=1,
               alpha : number=1) -> Tensor

Tensor.baddbmm(batch1 : Tensor,
               batch2 : Tensor,
               beta : number=1,
               alpha : number=1,
               out : Tensor) -> Tensor

Tensor.baddbmm_(batch1 : Tensor,
                batch2 : Tensor,
                beta : number=1,
                alpha : number=1) -> Tensor

Tensor.bernoulli(generator : Optional[Generator]) -> Tensor

Tensor.bernoulli(generator : Optional[Generator],
                 out : Tensor) -> Tensor

Tensor.bernoulli(p : float,
                 generator : Optional[Generator]) -> Tensor

Tensor.bernoulli(p : Tensor,
                 generator : Optional[Generator]) -> Tensor

Tensor.bernoulli(p : Tensor,
                 generator : Optional[Generator],
                 out : Tensor) -> Tensor

Tensor.bernoulli(p : float=0.5,
                 generator : Optional[Generator],
                 out : Tensor) -> Tensor

Tensor.bernoulli_(p : Tensor,
                  generator : Optional[Generator]) -> Tensor

Tensor.bernoulli_(p : float=0.5,
                  generator : Optional[Generator]) -> Tensor

Tensor.bincount(weights : Optional[Tensor],
                minlength : int=0) -> Tensor

Tensor.bincount(weights : Optional[Tensor],
                minlength : int=0,
                out : Tensor) -> Tensor

Tensor.bitwise_and(other : Tensor) -> Tensor

Tensor.bitwise_and(other : number) -> Tensor

Tensor.bitwise_and(other : Tensor,
                   out : Tensor) -> Tensor

Tensor.bitwise_and(other : number,
                   out : Tensor) -> Tensor

Tensor.bitwise_and_(other : Tensor) -> Tensor

Tensor.bitwise_and_(other : number) -> Tensor

Tensor.bitwise_left_shift(other : Tensor) -> Tensor

Tensor.bitwise_left_shift(other : number) -> Tensor

Tensor.bitwise_left_shift(other : Tensor,
                          out : Tensor) -> Tensor

Tensor.bitwise_left_shift(other : number,
                          out : Tensor) -> Tensor

Tensor.bitwise_left_shift_(other : number) -> Tensor

Tensor.bitwise_left_shift_(other : Tensor) -> Tensor

Tensor.bitwise_not() -> Tensor

Tensor.bitwise_not(out : Tensor) -> Tensor

Tensor.bitwise_not_() -> Tensor

Tensor.bitwise_or(other : Tensor) -> Tensor

Tensor.bitwise_or(other : number) -> Tensor

Tensor.bitwise_or(other : Tensor,
                  out : Tensor) -> Tensor

Tensor.bitwise_or(other : number,
                  out : Tensor) -> Tensor

Tensor.bitwise_or_(other : Tensor) -> Tensor

Tensor.bitwise_or_(other : number) -> Tensor

Tensor.bitwise_right_shift(other : Tensor) -> Tensor

Tensor.bitwise_right_shift(other : number) -> Tensor

Tensor.bitwise_right_shift(other : Tensor,
                           out : Tensor) -> Tensor

Tensor.bitwise_right_shift(other : number,
                           out : Tensor) -> Tensor

Tensor.bitwise_right_shift_(other : number) -> Tensor

Tensor.bitwise_right_shift_(other : Tensor) -> Tensor

Tensor.bitwise_xor(other : Tensor) -> Tensor

Tensor.bitwise_xor(other : number) -> Tensor

Tensor.bitwise_xor(other : Tensor,
                   out : Tensor) -> Tensor

Tensor.bitwise_xor(other : number,
                   out : Tensor) -> Tensor

Tensor.bitwise_xor_(other : Tensor) -> Tensor

Tensor.bitwise_xor_(other : number) -> Tensor

Tensor.bmm(mat2 : Tensor) -> Tensor

Tensor.bmm(mat2 : Tensor,
           out : Tensor) -> Tensor

Tensor.broadcast_to(size : List[int]) -> Tensor

Tensor.cauchy_(median : float=0.0,
               sigma : float=1.0,
               generator : Optional[Generator]) -> Tensor

Tensor.ccol_indices() -> Tensor

Tensor.ceil() -> Tensor

Tensor.ceil(out : Tensor) -> Tensor

Tensor.ceil_() -> Tensor

Tensor.chalf(memory_format : Optional[int]) -> Tensor

Tensor.cholesky(upper : bool=False) -> Tensor

Tensor.cholesky(upper : bool=False,
                out : Tensor) -> Tensor

Tensor.cholesky_inverse(upper : bool=False) -> Tensor

Tensor.cholesky_inverse(upper : bool=False,
                        out : Tensor) -> Tensor

Tensor.cholesky_solve(input2 : Tensor,
                      upper : bool=False) -> Tensor

Tensor.cholesky_solve(input2 : Tensor,
                      upper : bool=False,
                      out : Tensor) -> Tensor

Tensor.chunk(chunks : int,
             dim : int=0) -> List[Tensor]

Tensor.clamp(min : Optional[number],
             max : Optional[number]) -> Tensor

Tensor.clamp(min : Optional[Tensor],
             max : Optional[Tensor]) -> Tensor

Tensor.clamp(min : Optional[number],
             max : Optional[number],
             out : Tensor) -> Tensor

Tensor.clamp(min : Optional[Tensor],
             max : Optional[Tensor],
             out : Tensor) -> Tensor

Tensor.clamp_(min : Optional[number],
              max : Optional[number]) -> Tensor

Tensor.clamp_(min : Optional[Tensor],
              max : Optional[Tensor]) -> Tensor

Tensor.clamp_max(max : number) -> Tensor

Tensor.clamp_max(max : Tensor) -> Tensor

Tensor.clamp_max(max : number,
                 out : Tensor) -> Tensor

Tensor.clamp_max(max : Tensor,
                 out : Tensor) -> Tensor

Tensor.clamp_max_(max : number) -> Tensor

Tensor.clamp_max_(max : Tensor) -> Tensor

Tensor.clamp_min(min : number) -> Tensor

Tensor.clamp_min(min : Tensor) -> Tensor

Tensor.clamp_min(min : number,
                 out : Tensor) -> Tensor

Tensor.clamp_min(min : Tensor,
                 out : Tensor) -> Tensor

Tensor.clamp_min_(min : number) -> Tensor

Tensor.clamp_min_(min : Tensor) -> Tensor

Tensor.clip(min : Optional[number],
            max : Optional[number]) -> Tensor

Tensor.clip(min : Optional[Tensor],
            max : Optional[Tensor]) -> Tensor

Tensor.clip(min : Optional[number],
            max : Optional[number],
            out : Tensor) -> Tensor

Tensor.clip(min : Optional[Tensor],
            max : Optional[Tensor],
            out : Tensor) -> Tensor

Tensor.clip_(min : Optional[number],
             max : Optional[number]) -> Tensor

Tensor.clip_(min : Optional[Tensor],
             max : Optional[Tensor]) -> Tensor

Tensor.clone(memory_format : Optional[int]) -> Tensor

Tensor.clone(memory_format : Optional[int],
             out : Tensor) -> Tensor

Tensor.coalesce() -> Tensor

Tensor.col_indices() -> Tensor

Tensor.conj() -> Tensor

Tensor.conj_physical() -> Tensor

Tensor.conj_physical(out : Tensor) -> Tensor

Tensor.conj_physical_() -> Tensor

Tensor.contiguous(memory_format : int=0) -> Tensor

Tensor.copy_(src : Tensor,
             non_blocking : bool=False) -> Tensor

Tensor.copy_(other : Tensor) -> Tensor

Tensor.copy_(other : int) -> Tensor

Tensor.copy_(other : float) -> Tensor

Tensor.copysign(other : Tensor) -> Tensor

Tensor.copysign(other : number) -> Tensor

Tensor.copysign(other : Tensor,
                out : Tensor) -> Tensor

Tensor.copysign(other : number,
                out : Tensor) -> Tensor

Tensor.copysign_(other : Tensor) -> Tensor

Tensor.copysign_(other : number) -> Tensor

Tensor.corrcoef() -> Tensor

Tensor.cos() -> Tensor

Tensor.cos(out : Tensor) -> Tensor

Tensor.cos_() -> Tensor

Tensor.cosh() -> Tensor

Tensor.cosh(out : Tensor) -> Tensor

Tensor.cosh_() -> Tensor

Tensor.count_nonzero(dim : List[int]) -> Tensor

Tensor.count_nonzero(dim : List[int],
                     out : Tensor) -> Tensor

Tensor.count_nonzero(dim : Optional[int]) -> Tensor

Tensor.count_nonzero(dim : Optional[int],
                     out : Tensor) -> Tensor

Tensor.cov(correction : int=1,
           fweights : Optional[Tensor],
           aweights : Optional[Tensor]) -> Tensor

Tensor.cpu() -> Tensor

Tensor.cross(other : Tensor,
             dim : Optional[int]) -> Tensor

Tensor.cross(other : Tensor,
             dim : Optional[int],
             out : Tensor) -> Tensor

Tensor.crow_indices() -> Tensor

Tensor.cuda() -> Tensor

Tensor.cummax(dim : int) -> Tuple[Tensor, Tensor]

Tensor.cummax(dim : str) -> Tuple[Tensor, Tensor]

Tensor.cummax(dim : str,
              values : Tensor,
              indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.cummax(dim : int,
              values : Tensor,
              indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.cummin(dim : int) -> Tuple[Tensor, Tensor]

Tensor.cummin(dim : str) -> Tuple[Tensor, Tensor]

Tensor.cummin(dim : str,
              values : Tensor,
              indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.cummin(dim : int,
              values : Tensor,
              indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.cumprod(dim : int,
               dtype : Optional[int]) -> Tensor

Tensor.cumprod(dim : str,
               dtype : Optional[int]) -> Tensor

Tensor.cumprod(dim : str,
               dtype : Optional[int],
               out : Tensor) -> Tensor

Tensor.cumprod(dim : int,
               dtype : Optional[int],
               out : Tensor) -> Tensor

Tensor.cumprod_(dim : int,
                dtype : Optional[int]) -> Tensor

Tensor.cumprod_(dim : str,
                dtype : Optional[int]) -> Tensor

Tensor.cumsum(dim : int,
              dtype : Optional[int]) -> Tensor

Tensor.cumsum(dim : str,
              dtype : Optional[int]) -> Tensor

Tensor.cumsum(dim : str,
              dtype : Optional[int],
              out : Tensor) -> Tensor

Tensor.cumsum(dim : int,
              dtype : Optional[int],
              out : Tensor) -> Tensor

Tensor.cumsum_(dim : int,
               dtype : Optional[int]) -> Tensor

Tensor.cumsum_(dim : str,
               dtype : Optional[int]) -> Tensor

Tensor.data() -> Tensor

Tensor.deg2rad() -> Tensor

Tensor.deg2rad(out : Tensor) -> Tensor

Tensor.deg2rad_() -> Tensor

Tensor.dense_dim() -> int

Tensor.dequantize() -> Tensor

Tensor.dequantize(out : Tensor) -> Tensor

Tensor.det() -> Tensor

Tensor.detach() -> Tensor

Tensor.detach_() -> Tensor

Tensor.diag(diagonal : int=0) -> Tensor

Tensor.diag(diagonal : int=0,
            out : Tensor) -> Tensor

Tensor.diag_embed(offset : int=0,
                  dim1 : int=-2,
                  dim2 : int=-1) -> Tensor

Tensor.diag_embed(offset : int=0,
                  dim1 : int=-2,
                  dim2 : int=-1,
                  out : Tensor) -> Tensor

Tensor.diagflat(offset : int=0) -> Tensor

Tensor.diagonal(offset : int=0,
                dim1 : int=0,
                dim2 : int=1) -> Tensor

Tensor.diagonal(outdim : str,
                dim1 : str,
                dim2 : str,
                offset : int=0) -> Tensor

Tensor.diagonal_scatter(src : Tensor,
                        offset : int=0,
                        dim1 : int=0,
                        dim2 : int=1) -> Tensor

Tensor.diagonal_scatter(src : Tensor,
                        offset : int=0,
                        dim1 : int=0,
                        dim2 : int=1,
                        out : Tensor) -> Tensor

Tensor.diff(n : int=1,
            dim : int=-1,
            prepend : Optional[Tensor],
            append : Optional[Tensor]) -> Tensor

Tensor.diff(n : int=1,
            dim : int=-1,
            prepend : Optional[Tensor],
            append : Optional[Tensor],
            out : Tensor) -> Tensor

Tensor.digamma() -> Tensor

Tensor.digamma(out : Tensor) -> Tensor

Tensor.digamma_() -> Tensor

Tensor.dim() -> int

Tensor.dist(other : Tensor,
            p : number=2) -> Tensor

Tensor.dist(other : Tensor,
            p : number=2,
            out : Tensor) -> Tensor

Tensor.div(other : Tensor) -> Tensor

Tensor.div(other : number) -> Tensor

Tensor.div(other : Tensor,
           rounding_mode : Optional[str]) -> Tensor

Tensor.div(other : number,
           rounding_mode : Optional[str]) -> Tensor

Tensor.div(other : Tensor,
           out : Tensor) -> Tensor

Tensor.div(other : Tensor,
           rounding_mode : Optional[str],
           out : Tensor) -> Tensor

Tensor.div(other : number,
           out : Tensor) -> Tensor

Tensor.div(other : number,
           rounding_mode : Optional[str],
           out : Tensor) -> Tensor

Tensor.div_(other : Tensor) -> Tensor

Tensor.div_(other : Tensor,
            rounding_mode : Optional[str]) -> Tensor

Tensor.div_(other : number) -> Tensor

Tensor.div_(other : number,
            rounding_mode : Optional[str]) -> Tensor

Tensor.divide(other : Tensor) -> Tensor

Tensor.divide(other : number) -> Tensor

Tensor.divide(other : Tensor,
              rounding_mode : Optional[str]) -> Tensor

Tensor.divide(other : number,
              rounding_mode : Optional[str]) -> Tensor

Tensor.divide(other : Tensor,
              out : Tensor) -> Tensor

Tensor.divide(other : Tensor,
              rounding_mode : Optional[str],
              out : Tensor) -> Tensor

Tensor.divide_(other : Tensor) -> Tensor

Tensor.divide_(other : Tensor,
               rounding_mode : Optional[str]) -> Tensor

Tensor.divide_(other : number,
               rounding_mode : Optional[str]) -> Tensor

Tensor.divide_(other : number) -> Tensor

Tensor.dot(tensor : Tensor) -> Tensor

Tensor.dot(tensor : Tensor,
           out : Tensor) -> Tensor

Tensor.dsplit(sections : int) -> List[Tensor]

Tensor.dsplit(indices : List[int]) -> List[Tensor]

Tensor.element_size() -> int

Tensor.eq(other : Tensor) -> Tensor

Tensor.eq(other : number) -> Tensor

Tensor.eq(other : number,
          out : Tensor) -> Tensor

Tensor.eq(other : Tensor,
          out : Tensor) -> Tensor

Tensor.eq_(other : number) -> Tensor

Tensor.eq_(other : Tensor) -> Tensor

Tensor.equal(other : Tensor) -> bool

Tensor.erf() -> Tensor

Tensor.erf(out : Tensor) -> Tensor

Tensor.erf_() -> Tensor

Tensor.erfc() -> Tensor

Tensor.erfc(out : Tensor) -> Tensor

Tensor.erfc_() -> Tensor

Tensor.erfinv() -> Tensor

Tensor.erfinv(out : Tensor) -> Tensor

Tensor.erfinv_() -> Tensor

Tensor.exp() -> Tensor

Tensor.exp(out : Tensor) -> Tensor

Tensor.exp2() -> Tensor

Tensor.exp2(out : Tensor) -> Tensor

Tensor.exp2_() -> Tensor

Tensor.exp_() -> Tensor

Tensor.expand(size : List[int],
              implicit : bool=False) -> Tensor

Tensor.expand_as(other : Tensor) -> Tensor

Tensor.expm1() -> Tensor

Tensor.expm1(out : Tensor) -> Tensor

Tensor.expm1_() -> Tensor

Tensor.exponential_(lambd : float=1.0,
                    generator : Optional[Generator]) -> Tensor

Tensor.fill_(value : number) -> Tensor

Tensor.fill_(value : Tensor) -> Tensor

Tensor.fill_diagonal_(fill_value : number,
                      wrap : bool=False) -> Tensor

Tensor.fix() -> Tensor

Tensor.fix(out : Tensor) -> Tensor

Tensor.fix_() -> Tensor

Tensor.flatten(start_dim : int=0,
               end_dim : int=-1) -> Tensor

Tensor.flatten(dims : List[str],
               out_dim : str) -> Tensor

Tensor.flatten(start_dim : int,
               end_dim : int,
               out_dim : str) -> Tensor

Tensor.flatten(start_dim : str,
               end_dim : str,
               out_dim : str) -> Tensor

Tensor.flip(dims : List[int]) -> Tensor

Tensor.flip(dims : List[int],
            out : Tensor) -> Tensor

Tensor.fliplr() -> Tensor

Tensor.flipud() -> Tensor

Tensor.float_power(exponent : Tensor) -> Tensor

Tensor.float_power(exponent : number) -> Tensor

Tensor.float_power(exponent : Tensor,
                   out : Tensor) -> Tensor

Tensor.float_power(exponent : number,
                   out : Tensor) -> Tensor

Tensor.float_power_(exponent : Tensor) -> Tensor

Tensor.float_power_(exponent : number) -> Tensor

Tensor.floor() -> Tensor

Tensor.floor(out : Tensor) -> Tensor

Tensor.floor_() -> Tensor

Tensor.floor_divide(other : Tensor) -> Tensor

Tensor.floor_divide(other : number) -> Tensor

Tensor.floor_divide(other : Tensor,
                    out : Tensor) -> Tensor

Tensor.floor_divide(other : number,
                    out : Tensor) -> Tensor

Tensor.floor_divide_(other : number) -> Tensor

Tensor.floor_divide_(other : Tensor) -> Tensor

Tensor.fmax(other : Tensor) -> Tensor

Tensor.fmax(other : Tensor,
            out : Tensor) -> Tensor

Tensor.fmin(other : Tensor) -> Tensor

Tensor.fmin(other : Tensor,
            out : Tensor) -> Tensor

Tensor.fmod(other : Tensor) -> Tensor

Tensor.fmod(other : number) -> Tensor

Tensor.fmod(other : Tensor,
            out : Tensor) -> Tensor

Tensor.fmod(other : number,
            out : Tensor) -> Tensor

Tensor.fmod_(other : Tensor) -> Tensor

Tensor.fmod_(other : number) -> Tensor

Tensor.frac() -> Tensor

Tensor.frac(out : Tensor) -> Tensor

Tensor.frac_() -> Tensor

Tensor.frexp() -> Tuple[Tensor, Tensor]

Tensor.frexp(mantissa : Tensor,
             exponent : Tensor) -> Tuple[Tensor, Tensor]

Tensor.gather(dim : int,
              index : Tensor,
              sparse_grad : bool=False) -> Tensor

Tensor.gather(dim : int,
              index : Tensor,
              sparse_grad : bool=False,
              out : Tensor) -> Tensor

Tensor.gather(dim : str,
              index : Tensor,
              sparse_grad : bool=False) -> Tensor

Tensor.gather(dim : str,
              index : Tensor,
              sparse_grad : bool=False,
              out : Tensor) -> Tensor

Tensor.gcd(other : Tensor) -> Tensor

Tensor.gcd(other : Tensor,
           out : Tensor) -> Tensor

Tensor.gcd_(other : Tensor) -> Tensor

Tensor.ge(other : Tensor) -> Tensor

Tensor.ge(other : number) -> Tensor

Tensor.ge(other : number,
          out : Tensor) -> Tensor

Tensor.ge(other : Tensor,
          out : Tensor) -> Tensor

Tensor.ge_(other : number) -> Tensor

Tensor.ge_(other : Tensor) -> Tensor

Tensor.geometric_(p : float,
                  generator : Optional[Generator]) -> Tensor

Tensor.geqrf() -> Tuple[Tensor, Tensor]

Tensor.geqrf(a : Tensor,
             tau : Tensor) -> Tuple[Tensor, Tensor]

Tensor.ger(vec2 : Tensor) -> Tensor

Tensor.ger(vec2 : Tensor,
           out : Tensor) -> Tensor

Tensor.get_device() -> int

Tensor.greater(other : Tensor) -> Tensor

Tensor.greater(other : number) -> Tensor

Tensor.greater(other : number,
               out : Tensor) -> Tensor

Tensor.greater(other : Tensor,
               out : Tensor) -> Tensor

Tensor.greater_(other : number) -> Tensor

Tensor.greater_(other : Tensor) -> Tensor

Tensor.greater_equal(other : Tensor) -> Tensor

Tensor.greater_equal(other : number) -> Tensor

Tensor.greater_equal(other : number,
                     out : Tensor) -> Tensor

Tensor.greater_equal(other : Tensor,
                     out : Tensor) -> Tensor

Tensor.greater_equal_(other : number) -> Tensor

Tensor.greater_equal_(other : Tensor) -> Tensor

Tensor.gt(other : Tensor) -> Tensor

Tensor.gt(other : number) -> Tensor

Tensor.gt(other : number,
          out : Tensor) -> Tensor

Tensor.gt(other : Tensor,
          out : Tensor) -> Tensor

Tensor.gt_(other : number) -> Tensor

Tensor.gt_(other : Tensor) -> Tensor

Tensor.hardshrink(lambd : number=0.5) -> Tensor

Tensor.hardshrink(lambd : number=0.5,
                  out : Tensor) -> Tensor

Tensor.heaviside(values : Tensor) -> Tensor

Tensor.heaviside(values : Tensor,
                 out : Tensor) -> Tensor

Tensor.heaviside_(values : Tensor) -> Tensor

Tensor.histc(bins : int=100,
             min : number=0,
             max : number=0) -> Tensor

Tensor.histc(bins : int=100,
             min : number=0,
             max : number=0,
             out : Tensor) -> Tensor

Tensor.histogram(bins : Tensor,
                 weight : Optional[Tensor],
                 density : bool=False) -> Tuple[Tensor, Tensor]

Tensor.histogram(bins : Tensor,
                 weight : Optional[Tensor],
                 density : bool=False,
                 hist : Tensor,
                 bin_edges : Tensor) -> Tuple[Tensor, Tensor]

Tensor.histogram(bins : int=100,
                 range : Optional[List[float]],
                 weight : Optional[Tensor],
                 density : bool=False) -> Tuple[Tensor, Tensor]

Tensor.histogram(bins : int=100,
                 range : Optional[List[float]],
                 weight : Optional[Tensor],
                 density : bool=False,
                 hist : Tensor,
                 bin_edges : Tensor) -> Tuple[Tensor, Tensor]

Tensor.hsplit(sections : int) -> List[Tensor]

Tensor.hsplit(indices : List[int]) -> List[Tensor]

Tensor.hypot(other : Tensor) -> Tensor

Tensor.hypot(other : Tensor,
             out : Tensor) -> Tensor

Tensor.hypot_(other : Tensor) -> Tensor

Tensor.i0() -> Tensor

Tensor.i0(out : Tensor) -> Tensor

Tensor.i0_() -> Tensor

Tensor.igamma(other : Tensor) -> Tensor

Tensor.igamma(other : Tensor,
              out : Tensor) -> Tensor

Tensor.igamma_(other : Tensor) -> Tensor

Tensor.igammac(other : Tensor) -> Tensor

Tensor.igammac(other : Tensor,
               out : Tensor) -> Tensor

Tensor.igammac_(other : Tensor) -> Tensor

Tensor.imag() -> Tensor

Tensor.index_add(dim : int,
                 index : Tensor,
                 source : Tensor,
                 alpha : number=1) -> Tensor

Tensor.index_add(dim : int,
                 index : Tensor,
                 source : Tensor,
                 alpha : number=1,
                 out : Tensor) -> Tensor

Tensor.index_add(dim : str,
                 index : Tensor,
                 source : Tensor,
                 alpha : number=1) -> Tensor

Tensor.index_add_(dim : int,
                  index : Tensor,
                  source : Tensor,
                  alpha : number=1) -> Tensor

Tensor.index_copy(dim : int,
                  index : Tensor,
                  source : Tensor) -> Tensor

Tensor.index_copy(dim : str,
                  index : Tensor,
                  source : Tensor) -> Tensor

Tensor.index_copy(dim : int,
                  index : Tensor,
                  source : Tensor,
                  out : Tensor) -> Tensor

Tensor.index_copy_(dim : int,
                   index : Tensor,
                   source : Tensor) -> Tensor

Tensor.index_copy_(dim : str,
                   index : Tensor,
                   source : Tensor) -> Tensor

Tensor.index_fill(dim : int,
                  index : Tensor,
                  value : Tensor) -> Tensor

Tensor.index_fill(dim : int,
                  index : Tensor,
                  value : number) -> Tensor

Tensor.index_fill(dim : str,
                  index : Tensor,
                  value : number) -> Tensor

Tensor.index_fill(dim : str,
                  index : Tensor,
                  value : Tensor) -> Tensor

Tensor.index_fill(dim : int,
                  index : Tensor,
                  value : number,
                  out : Tensor) -> Tensor

Tensor.index_fill(dim : int,
                  index : Tensor,
                  value : Tensor,
                  out : Tensor) -> Tensor

Tensor.index_fill_(dim : int,
                   index : Tensor,
                   value : Tensor) -> Tensor

Tensor.index_fill_(dim : int,
                   index : Tensor,
                   value : number) -> Tensor

Tensor.index_fill_(dim : str,
                   index : Tensor,
                   value : number) -> Tensor

Tensor.index_fill_(dim : str,
                   index : Tensor,
                   value : Tensor) -> Tensor

Tensor.index_put(indices : List[Optional[Tensor]],
                 values : Tensor,
                 accumulate : bool=False) -> Tensor

Tensor.index_put(indices : List[Optional[Tensor]],
                 values : Tensor,
                 accumulate : bool=False,
                 out : Tensor) -> Tensor

Tensor.index_put(indices : List[Tensor],
                 values : Tensor,
                 accumulate : bool=False) -> Tensor

Tensor.index_put_(indices : List[Optional[Tensor]],
                  values : Tensor,
                  accumulate : bool=False) -> Tensor

Tensor.index_put_(indices : List[Tensor],
                  values : Tensor,
                  accumulate : bool=False) -> Tensor

Tensor.index_reduce(dim : int,
                    index : Tensor,
                    source : Tensor,
                    reduce : str,
                    include_self : bool=True) -> Tensor

Tensor.index_reduce(dim : int,
                    index : Tensor,
                    source : Tensor,
                    reduce : str,
                    include_self : bool=True,
                    out : Tensor) -> Tensor

Tensor.index_reduce_(dim : int,
                     index : Tensor,
                     source : Tensor,
                     reduce : str,
                     include_self : bool=True) -> Tensor

Tensor.index_select(dim : int,
                    index : Tensor) -> Tensor

Tensor.index_select(dim : int,
                    index : Tensor,
                    out : Tensor) -> Tensor

Tensor.index_select(dim : str,
                    index : Tensor) -> Tensor

Tensor.index_select(dim : str,
                    index : Tensor,
                    out : Tensor) -> Tensor

Tensor.indices() -> Tensor

Tensor.inner(other : Tensor) -> Tensor

Tensor.inner(other : Tensor,
             out : Tensor) -> Tensor

Tensor.int_repr(out : Tensor) -> Tensor

Tensor.int_repr() -> Tensor

Tensor.inverse() -> Tensor

Tensor.inverse(out : Tensor) -> Tensor

Tensor.is_coalesced() -> bool

Tensor.is_complex() -> bool

Tensor.is_conj() -> bool

Tensor.is_contiguous() -> bool

Tensor.is_contiguous(memory_format : int) -> bool

Tensor.is_distributed() -> bool

Tensor.is_floating_point() -> bool

Tensor.is_inference() -> bool

Tensor.is_leaf() -> bool

Tensor.is_neg() -> bool

Tensor.is_nonzero() -> bool

Tensor.is_pinned(device : Optional[Device]) -> bool

Tensor.is_same_size(other : Tensor) -> bool

Tensor.is_set_to(tensor : Tensor) -> bool

Tensor.is_signed() -> bool

Tensor.isclose(other : Tensor,
               rtol : float=1e-05,
               atol : float=1e-08,
               equal_nan : bool=False) -> Tensor

Tensor.isfinite() -> Tensor

Tensor.isinf() -> Tensor

Tensor.isinf(out : Tensor) -> Tensor

Tensor.isnan() -> Tensor

Tensor.isnan(out : Tensor) -> Tensor

Tensor.isneginf() -> Tensor

Tensor.isneginf(out : Tensor) -> Tensor

Tensor.isposinf() -> Tensor

Tensor.isposinf(out : Tensor) -> Tensor

Tensor.isreal() -> Tensor

Tensor.istft(n_fft : int,
             hop_length : Optional[int],
             win_length : Optional[int],
             window : Optional[Tensor],
             center : bool=True,
             normalized : bool=False,
             onesided : Optional[bool],
             length : Optional[int],
             return_complex : bool=False) -> Tensor

Tensor.item() -> number

Tensor.kron(other : Tensor) -> Tensor

Tensor.kron(other : Tensor,
            out : Tensor) -> Tensor

Tensor.kthvalue(k : int,
                dim : int=-1,
                keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.kthvalue(k : int,
                dim : str,
                keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.kthvalue(k : int,
                dim : str,
                keepdim : bool=False,
                values : Tensor,
                indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.kthvalue(k : int,
                dim : int=-1,
                keepdim : bool=False,
                values : Tensor,
                indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.lcm(other : Tensor) -> Tensor

Tensor.lcm(other : Tensor,
           out : Tensor) -> Tensor

Tensor.lcm_(other : Tensor) -> Tensor

Tensor.ldexp(other : Tensor) -> Tensor

Tensor.ldexp(other : Tensor,
             out : Tensor) -> Tensor

Tensor.ldexp_(other : Tensor) -> Tensor

Tensor.le(other : Tensor) -> Tensor

Tensor.le(other : number) -> Tensor

Tensor.le(other : number,
          out : Tensor) -> Tensor

Tensor.le(other : Tensor,
          out : Tensor) -> Tensor

Tensor.le_(other : number) -> Tensor

Tensor.le_(other : Tensor) -> Tensor

Tensor.lerp(end : Tensor,
            weight : number) -> Tensor

Tensor.lerp(end : Tensor,
            weight : Tensor) -> Tensor

Tensor.lerp(end : Tensor,
            weight : number,
            out : Tensor) -> Tensor

Tensor.lerp(end : Tensor,
            weight : Tensor,
            out : Tensor) -> Tensor

Tensor.lerp_(end : Tensor,
             weight : number) -> Tensor

Tensor.lerp_(end : Tensor,
             weight : Tensor) -> Tensor

Tensor.less(other : Tensor) -> Tensor

Tensor.less(other : number) -> Tensor

Tensor.less(other : number,
            out : Tensor) -> Tensor

Tensor.less(other : Tensor,
            out : Tensor) -> Tensor

Tensor.less_(other : number) -> Tensor

Tensor.less_(other : Tensor) -> Tensor

Tensor.less_equal(other : Tensor) -> Tensor

Tensor.less_equal(other : number) -> Tensor

Tensor.less_equal(other : number,
                  out : Tensor) -> Tensor

Tensor.less_equal(other : Tensor,
                  out : Tensor) -> Tensor

Tensor.less_equal_(other : number) -> Tensor

Tensor.less_equal_(other : Tensor) -> Tensor

Tensor.lgamma() -> Tensor

Tensor.lgamma(out : Tensor) -> Tensor

Tensor.lgamma_() -> Tensor

Tensor.log() -> Tensor

Tensor.log(out : Tensor) -> Tensor

Tensor.log10() -> Tensor

Tensor.log10(out : Tensor) -> Tensor

Tensor.log10_() -> Tensor

Tensor.log1p() -> Tensor

Tensor.log1p(out : Tensor) -> Tensor

Tensor.log1p_() -> Tensor

Tensor.log2() -> Tensor

Tensor.log2(out : Tensor) -> Tensor

Tensor.log2_() -> Tensor

Tensor.log_() -> Tensor

Tensor.log_normal_(mean : float=1.0,
                   std : float=2.0,
                   generator : Optional[Generator]) -> Tensor

Tensor.log_softmax(dim : int,
                   dtype : Optional[int]) -> Tensor

Tensor.log_softmax(dim : str,
                   dtype : Optional[int]) -> Tensor

Tensor.log_softmax(dim : int,
                   dtype : Optional[int],
                   out : Tensor) -> Tensor

Tensor.logaddexp(other : Tensor) -> Tensor

Tensor.logaddexp(other : Tensor,
                 out : Tensor) -> Tensor

Tensor.logaddexp2(other : Tensor) -> Tensor

Tensor.logaddexp2(other : Tensor,
                  out : Tensor) -> Tensor

Tensor.logcumsumexp(dim : int) -> Tensor

Tensor.logcumsumexp(dim : str) -> Tensor

Tensor.logcumsumexp(dim : str,
                    out : Tensor) -> Tensor

Tensor.logcumsumexp(dim : int,
                    out : Tensor) -> Tensor

Tensor.logdet() -> Tensor

Tensor.logical_and(other : Tensor) -> Tensor

Tensor.logical_and(other : Tensor,
                   out : Tensor) -> Tensor

Tensor.logical_and_(other : Tensor) -> Tensor

Tensor.logical_not() -> Tensor

Tensor.logical_not(out : Tensor) -> Tensor

Tensor.logical_not_() -> Tensor

Tensor.logical_or(other : Tensor) -> Tensor

Tensor.logical_or(other : Tensor,
                  out : Tensor) -> Tensor

Tensor.logical_or_(other : Tensor) -> Tensor

Tensor.logical_xor(other : Tensor) -> Tensor

Tensor.logical_xor(other : Tensor,
                   out : Tensor) -> Tensor

Tensor.logical_xor_(other : Tensor) -> Tensor

Tensor.logit(eps : Optional[float]) -> Tensor

Tensor.logit(eps : Optional[float],
             out : Tensor) -> Tensor

Tensor.logit_(eps : Optional[float]) -> Tensor

Tensor.logsumexp(dim : List[int],
                 keepdim : bool=False) -> Tensor

Tensor.logsumexp(dim : List[str],
                 keepdim : bool=False) -> Tensor

Tensor.logsumexp(dim : List[str],
                 keepdim : bool=False,
                 out : Tensor) -> Tensor

Tensor.logsumexp(dim : List[int],
                 keepdim : bool=False,
                 out : Tensor) -> Tensor

Tensor.lt(other : Tensor) -> Tensor

Tensor.lt(other : number) -> Tensor

Tensor.lt(other : number,
          out : Tensor) -> Tensor

Tensor.lt(other : Tensor,
          out : Tensor) -> Tensor

Tensor.lt_(other : number) -> Tensor

Tensor.lt_(other : Tensor) -> Tensor

Tensor.lu_solve(LU_data : Tensor,
                LU_pivots : Tensor) -> Tensor

Tensor.lu_solve(LU_data : Tensor,
                LU_pivots : Tensor,
                out : Tensor) -> Tensor

Tensor.mH() -> Tensor

Tensor.mH() -> Tensor

Tensor.mT() -> Tensor

Tensor.mT() -> Tensor

Tensor.masked_fill(mask : Tensor,
                   value : number) -> Tensor

Tensor.masked_fill(mask : Tensor,
                   value : Tensor) -> Tensor

Tensor.masked_fill(mask : Tensor,
                   value : number,
                   out : Tensor) -> Tensor

Tensor.masked_fill(mask : Tensor,
                   value : Tensor,
                   out : Tensor) -> Tensor

Tensor.masked_fill_(mask : Tensor,
                    value : number) -> Tensor

Tensor.masked_fill_(mask : Tensor,
                    value : Tensor) -> Tensor

Tensor.masked_scatter(mask : Tensor,
                      source : Tensor) -> Tensor

Tensor.masked_scatter(mask : Tensor,
                      source : Tensor,
                      out : Tensor) -> Tensor

Tensor.masked_scatter_(mask : Tensor,
                       source : Tensor) -> Tensor

Tensor.masked_select(mask : Tensor) -> Tensor

Tensor.masked_select(mask : Tensor,
                     out : Tensor) -> Tensor

Tensor.matmul(other : Tensor) -> Tensor

Tensor.matmul(other : Tensor,
              out : Tensor) -> Tensor

Tensor.matrix_exp() -> Tensor

Tensor.matrix_power(n : int) -> Tensor

Tensor.matrix_power(n : int,
                    out : Tensor) -> Tensor

Tensor.max(other : Tensor) -> Tensor

Tensor.max() -> Tensor

Tensor.max(dim : int,
           keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.max(dim : int,
           keepdim : bool=False,
           max : Tensor,
           max_values : Tensor) -> Tuple[Tensor, Tensor]

Tensor.max(dim : str,
           keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.max(dim : str,
           keepdim : bool=False,
           max : Tensor,
           max_values : Tensor) -> Tuple[Tensor, Tensor]

Tensor.max(out : Tensor) -> Tensor

Tensor.max(other : Tensor,
           out : Tensor) -> Tensor

Tensor.maximum(other : Tensor) -> Tensor

Tensor.maximum(other : Tensor,
               out : Tensor) -> Tensor

Tensor.mean(dtype : Optional[int]) -> Tensor

Tensor.mean(dim : Optional[List[int]],
            keepdim : bool=False,
            dtype : Optional[int]) -> Tensor

Tensor.mean(dim : List[str],
            keepdim : bool=False,
            dtype : Optional[int]) -> Tensor

Tensor.mean(dim : List[str],
            keepdim : bool=False,
            dtype : Optional[int],
            out : Tensor) -> Tensor

Tensor.mean(dim : Optional[List[int]],
            keepdim : bool=False,
            dtype : Optional[int],
            out : Tensor) -> Tensor

Tensor.mean(dtype : Optional[int],
            out : Tensor) -> Tensor

Tensor.median() -> Tensor

Tensor.median(dim : int,
              keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.median(dim : int,
              keepdim : bool=False,
              values : Tensor,
              indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.median(dim : str,
              keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.median(dim : str,
              keepdim : bool=False,
              values : Tensor,
              indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.median(out : Tensor) -> Tensor

Tensor.min(other : Tensor) -> Tensor

Tensor.min() -> Tensor

Tensor.min(dim : int,
           keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.min(dim : int,
           keepdim : bool=False,
           min : Tensor,
           min_indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.min(dim : str,
           keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.min(dim : str,
           keepdim : bool=False,
           min : Tensor,
           min_indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.min(out : Tensor) -> Tensor

Tensor.min(other : Tensor,
           out : Tensor) -> Tensor

Tensor.minimum(other : Tensor) -> Tensor

Tensor.minimum(other : Tensor,
               out : Tensor) -> Tensor

Tensor.mm(mat2 : Tensor) -> Tensor

Tensor.mm(mat2 : Tensor,
          out : Tensor) -> Tensor

Tensor.mode(dim : int=-1,
            keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.mode(dim : str,
            keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.mode(dim : str,
            keepdim : bool=False,
            values : Tensor,
            indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.mode(dim : int=-1,
            keepdim : bool=False,
            values : Tensor,
            indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.moveaxis(source : List[int],
                destination : List[int]) -> Tensor

Tensor.moveaxis(source : int,
                destination : int) -> Tensor

Tensor.movedim(source : int,
               destination : int) -> Tensor

Tensor.movedim(source : List[int],
               destination : List[int]) -> Tensor

Tensor.msort() -> Tensor

Tensor.msort(out : Tensor) -> Tensor

Tensor.mul(other : Tensor) -> Tensor

Tensor.mul(other : number) -> Tensor

Tensor.mul(other : Tensor,
           out : Tensor) -> Tensor

Tensor.mul(other : number,
           out : Tensor) -> Tensor

Tensor.mul_(other : Tensor) -> Tensor

Tensor.mul_(other : number) -> Tensor

Tensor.multinomial(num_samples : int,
                   replacement : bool=False,
                   generator : Optional[Generator]) -> Tensor

Tensor.multinomial(num_samples : int,
                   replacement : bool=False,
                   generator : Optional[Generator],
                   out : Tensor) -> Tensor

Tensor.multiply(other : Tensor) -> Tensor

Tensor.multiply(other : number) -> Tensor

Tensor.multiply(other : Tensor,
                out : Tensor) -> Tensor

Tensor.multiply_(other : Tensor) -> Tensor

Tensor.multiply_(other : number) -> Tensor

Tensor.mv(vec : Tensor) -> Tensor

Tensor.mv(vec : Tensor,
          out : Tensor) -> Tensor

Tensor.mvlgamma(p : int) -> Tensor

Tensor.mvlgamma(p : int,
                out : Tensor) -> Tensor

Tensor.mvlgamma_(p : int) -> Tensor

Tensor.nan_to_num(nan : Optional[float],
                  posinf : Optional[float],
                  neginf : Optional[float]) -> Tensor

Tensor.nan_to_num(nan : Optional[float],
                  posinf : Optional[float],
                  neginf : Optional[float],
                  out : Tensor) -> Tensor

Tensor.nan_to_num_(nan : Optional[float],
                   posinf : Optional[float],
                   neginf : Optional[float]) -> Tensor

Tensor.nanmean(dim : Optional[List[int]],
               keepdim : bool=False,
               dtype : Optional[int]) -> Tensor

Tensor.nanmean(dim : Optional[List[int]],
               keepdim : bool=False,
               dtype : Optional[int],
               out : Tensor) -> Tensor

Tensor.nanmedian() -> Tensor

Tensor.nanmedian(dim : int,
                 keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.nanmedian(dim : int,
                 keepdim : bool=False,
                 values : Tensor,
                 indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.nanmedian(dim : str,
                 keepdim : bool=False) -> Tuple[Tensor, Tensor]

Tensor.nanmedian(dim : str,
                 keepdim : bool=False,
                 values : Tensor,
                 indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.nanmedian(out : Tensor) -> Tensor

Tensor.nanquantile(q : Tensor,
                   dim : Optional[int],
                   keepdim : bool=False,
                   interpolation : str=linear) -> Tensor

Tensor.nanquantile(q : float,
                   dim : Optional[int],
                   keepdim : bool=False,
                   interpolation : str=linear) -> Tensor

Tensor.nanquantile(q : Tensor,
                   dim : Optional[int],
                   keepdim : bool=False,
                   interpolation : str=linear,
                   out : Tensor) -> Tensor

Tensor.nanquantile(q : float,
                   dim : Optional[int],
                   keepdim : bool=False,
                   interpolation : str=linear,
                   out : Tensor) -> Tensor

Tensor.nansum(dim : Optional[List[int]],
              keepdim : bool=False,
              dtype : Optional[int]) -> Tensor

Tensor.nansum(dim : Optional[List[int]],
              keepdim : bool=False,
              dtype : Optional[int],
              out : Tensor) -> Tensor

Tensor.narrow(dim : int,
              start : int,
              length : int) -> Tensor

Tensor.narrow(dim : int,
              start : Tensor,
              length : int) -> Tensor

Tensor.narrow_copy(dim : int,
                   start : int,
                   length : int) -> Tensor

Tensor.narrow_copy(dim : int,
                   start : int,
                   length : int,
                   out : Tensor) -> Tensor

Tensor.ne(other : Tensor) -> Tensor

Tensor.ne(other : number) -> Tensor

Tensor.ne(other : number,
          out : Tensor) -> Tensor

Tensor.ne(other : Tensor,
          out : Tensor) -> Tensor

Tensor.ne_(other : number) -> Tensor

Tensor.ne_(other : Tensor) -> Tensor

Tensor.neg() -> Tensor

Tensor.neg(out : Tensor) -> Tensor

Tensor.neg_() -> Tensor

Tensor.negative() -> Tensor

Tensor.negative(out : Tensor) -> Tensor

Tensor.negative_() -> Tensor

Tensor.new_empty(size : List[int],
                 dtype : Optional[int],
                 layout : Optional[int],
                 device : Optional[Device],
                 pin_memory : Optional[bool]) -> Tensor

Tensor.new_empty(size : List[int],
                 out : Tensor) -> Tensor

Tensor.new_empty_strided(size : List[int],
                         stride : List[int],
                         dtype : Optional[int],
                         layout : Optional[int],
                         device : Optional[Device],
                         pin_memory : Optional[bool]) -> Tensor

Tensor.new_empty_strided(size : List[int],
                         stride : List[int],
                         out : Tensor) -> Tensor

Tensor.new_full(size : List[int],
                fill_value : number,
                dtype : Optional[int],
                layout : Optional[int],
                device : Optional[Device],
                pin_memory : Optional[bool]) -> Tensor

Tensor.new_full(size : List[int],
                fill_value : number,
                out : Tensor) -> Tensor

Tensor.new_ones(size : List[int],
                dtype : Optional[int],
                layout : Optional[int],
                device : Optional[Device],
                pin_memory : Optional[bool]) -> Tensor

Tensor.new_ones(size : List[int],
                out : Tensor) -> Tensor

Tensor.new_zeros(size : List[int],
                 dtype : Optional[int],
                 layout : Optional[int],
                 device : Optional[Device],
                 pin_memory : Optional[bool]) -> Tensor

Tensor.new_zeros(size : List[int],
                 out : Tensor) -> Tensor

Tensor.nextafter(other : Tensor) -> Tensor

Tensor.nextafter(other : Tensor,
                 out : Tensor) -> Tensor

Tensor.nextafter_(other : Tensor) -> Tensor

Tensor.nonzero() -> Tensor

Tensor.nonzero(out : Tensor) -> Tensor

Tensor.nonzero_static(size : int,
                      fill_value : int=-1) -> Tensor

Tensor.nonzero_static(size : int,
                      fill_value : int=-1,
                      out : Tensor) -> Tensor

Tensor.norm(p : number=2) -> Tensor

Tensor.norm(p : Optional[number],
            dim : List[int],
            keepdim : bool=False) -> Tensor

Tensor.norm(p : Optional[number],
            dim : List[str],
            keepdim : bool=False) -> Tensor

Tensor.norm(p : Optional[number],
            dim : List[int],
            keepdim : bool,
            dtype : int) -> Tensor

Tensor.norm(p : Optional[number],
            dim : List[int],
            keepdim : bool,
            dtype : int,
            out : Tensor) -> Tensor

Tensor.norm(p : Optional[number],
            dim : List[int],
            keepdim : bool=False,
            out : Tensor) -> Tensor

Tensor.norm(p : Optional[number],
            dtype : int) -> Tensor

Tensor.norm(p : Optional[number],
            dtype : int,
            out : Tensor) -> Tensor

Tensor.norm(p : number=2,
            out : Tensor) -> Tensor

Tensor.norm(p : Optional[number],
            dim : List[str],
            keepdim : bool,
            dtype : int) -> Tensor

Tensor.norm(p : Optional[number],
            dim : List[str],
            keepdim : bool,
            dtype : int,
            out : Tensor) -> Tensor

Tensor.norm(p : Optional[number],
            dim : List[str],
            keepdim : bool=False,
            out : Tensor) -> Tensor

Tensor.normal_(mean : float=0.0,
               std : float=1.0,
               generator : Optional[Generator]) -> Tensor

Tensor.not_equal(other : Tensor) -> Tensor

Tensor.not_equal(other : number) -> Tensor

Tensor.not_equal(other : number,
                 out : Tensor) -> Tensor

Tensor.not_equal(other : Tensor,
                 out : Tensor) -> Tensor

Tensor.not_equal_(other : number) -> Tensor

Tensor.not_equal_(other : Tensor) -> Tensor

Tensor.numel() -> int

Tensor.orgqr(input2 : Tensor) -> Tensor

Tensor.orgqr(input2 : Tensor,
             out : Tensor) -> Tensor

Tensor.ormqr(input2 : Tensor,
             input3 : Tensor,
             left : bool=True,
             transpose : bool=False) -> Tensor

Tensor.ormqr(input2 : Tensor,
             input3 : Tensor,
             left : bool=True,
             transpose : bool=False,
             out : Tensor) -> Tensor

Tensor.outer(vec2 : Tensor) -> Tensor

Tensor.outer(vec2 : Tensor,
             out : Tensor) -> Tensor

Tensor.output_nr() -> int

Tensor.permute(dims : List[int]) -> Tensor

Tensor.pin_memory(device : Optional[Device]) -> Tensor

Tensor.pinverse(rcond : float=1e-15) -> Tensor

Tensor.polygamma_(n : int) -> Tensor

Tensor.positive() -> Tensor

Tensor.pow(exponent : Tensor) -> Tensor

Tensor.pow(exponent : number) -> Tensor

Tensor.pow(exponent : number,
           out : Tensor) -> Tensor

Tensor.pow(exponent : Tensor,
           out : Tensor) -> Tensor

Tensor.pow_(exponent : number) -> Tensor

Tensor.pow_(exponent : Tensor) -> Tensor

Tensor.prelu(weight : Tensor) -> Tensor

Tensor.prod(dtype : Optional[int]) -> Tensor

Tensor.prod(dim : int,
            keepdim : bool=False,
            dtype : Optional[int]) -> Tensor

Tensor.prod(dim : str,
            keepdim : bool=False,
            dtype : Optional[int]) -> Tensor

Tensor.prod(dim : str,
            keepdim : bool=False,
            dtype : Optional[int],
            out : Tensor) -> Tensor

Tensor.prod(dim : int,
            keepdim : bool=False,
            dtype : Optional[int],
            out : Tensor) -> Tensor

Tensor.prod(dtype : Optional[int],
            out : Tensor) -> Tensor

Tensor.put(index : Tensor,
           source : Tensor,
           accumulate : bool=False) -> Tensor

Tensor.put(index : Tensor,
           source : Tensor,
           accumulate : bool=False,
           out : Tensor) -> Tensor

Tensor.put_(index : Tensor,
            source : Tensor,
            accumulate : bool=False) -> Tensor

Tensor.q_per_channel_axis() -> int

Tensor.q_per_channel_scales(out : Tensor) -> Tensor

Tensor.q_per_channel_scales() -> Tensor

Tensor.q_per_channel_zero_points(out : Tensor) -> Tensor

Tensor.q_per_channel_zero_points() -> Tensor

Tensor.q_scale() -> float

Tensor.q_zero_point() -> int

Tensor.qr(some : bool=True) -> Tuple[Tensor, Tensor]

Tensor.qr(some : bool=True,
          Q : Tensor,
          R : Tensor) -> Tuple[Tensor, Tensor]

Tensor.qscheme() -> QScheme

Tensor.quantile(q : Tensor,
                dim : Optional[int],
                keepdim : bool=False,
                interpolation : str=linear) -> Tensor

Tensor.quantile(q : float,
                dim : Optional[int],
                keepdim : bool=False,
                interpolation : str=linear) -> Tensor

Tensor.quantile(q : Tensor,
                dim : Optional[int],
                keepdim : bool=False,
                interpolation : str=linear,
                out : Tensor) -> Tensor

Tensor.quantile(q : float,
                dim : Optional[int],
                keepdim : bool=False,
                interpolation : str=linear,
                out : Tensor) -> Tensor

Tensor.rad2deg() -> Tensor

Tensor.rad2deg(out : Tensor) -> Tensor

Tensor.rad2deg_() -> Tensor

Tensor.random_(from : int,
               to : Optional[int],
               generator : Optional[Generator]) -> Tensor

Tensor.random_(to : int,
               generator : Optional[Generator]) -> Tensor

Tensor.random_(generator : Optional[Generator]) -> Tensor

Tensor.ravel() -> Tensor

Tensor.real() -> Tensor

Tensor.reciprocal() -> Tensor

Tensor.reciprocal(out : Tensor) -> Tensor

Tensor.reciprocal_() -> Tensor

Tensor.record_stream(s : Stream) -> Tuple[]

Tensor.refine_names(names : List[str]) -> Tensor

Tensor.relu() -> Tensor

Tensor.relu(out : Tensor) -> Tensor

Tensor.relu_() -> Tensor

Tensor.remainder(other : Tensor) -> Tensor

Tensor.remainder(other : number) -> Tensor

Tensor.remainder(other : Tensor,
                 out : Tensor) -> Tensor

Tensor.remainder(other : number,
                 out : Tensor) -> Tensor

Tensor.remainder_(other : Tensor) -> Tensor

Tensor.remainder_(other : number) -> Tensor

Tensor.rename(names : Optional[List[str]]) -> Tensor

Tensor.rename_(names : Optional[List[str]]) -> Tensor

Tensor.renorm(p : number,
              dim : int,
              maxnorm : number) -> Tensor

Tensor.renorm(p : number,
              dim : int,
              maxnorm : number,
              out : Tensor) -> Tensor

Tensor.renorm_(p : number,
               dim : int,
               maxnorm : number) -> Tensor

Tensor.repeat(repeats : List[int]) -> Tensor

Tensor.repeat(repeats : List[int],
              out : Tensor) -> Tensor

Tensor.repeat_interleave(repeats : Tensor,
                         dim : Optional[int],
                         output_size : Optional[int]) -> Tensor

Tensor.repeat_interleave(repeats : int,
                         dim : Optional[int],
                         output_size : Optional[int]) -> Tensor

Tensor.requires_grad_(requires_grad : bool=True) -> Tensor

Tensor.reshape(shape : List[int]) -> Tensor

Tensor.reshape_as(other : Tensor) -> Tensor

Tensor.resize(size : List[int],
              memory_format : Optional[int]) -> Tensor

Tensor.resize(size : List[int],
              memory_format : Optional[int],
              out : Tensor) -> Tensor

Tensor.resize_(size : List[int],
               memory_format : Optional[int]) -> Tensor

Tensor.resize_as(the_template : Tensor,
                 memory_format : Optional[int]) -> Tensor

Tensor.resize_as(the_template : Tensor,
                 memory_format : Optional[int],
                 out : Tensor) -> Tensor

Tensor.resize_as_(the_template : Tensor,
                  memory_format : Optional[int]) -> Tensor

Tensor.resize_as_sparse_(the_template : Tensor) -> Tensor

Tensor.resolve_conj() -> Tensor

Tensor.resolve_neg() -> Tensor

Tensor.retain_grad() -> Tuple[]

Tensor.retains_grad() -> bool

Tensor.roll(shifts : List[int],
            dims : List[int]=[]) -> Tensor

Tensor.roll(shifts : List[int],
            dims : List[int]=[],
            out : Tensor) -> Tensor

Tensor.rot90(k : int=1,
             dims : List[int]=[0, 1]) -> Tensor

Tensor.rot90(k : int=1,
             dims : List[int]=[0, 1],
             out : Tensor) -> Tensor

Tensor.round() -> Tensor

Tensor.round(decimals : int) -> Tensor

Tensor.round(out : Tensor) -> Tensor

Tensor.round(decimals : int,
             out : Tensor) -> Tensor

Tensor.round_() -> Tensor

Tensor.round_(decimals : int) -> Tensor

Tensor.row_indices() -> Tensor

Tensor.rsqrt() -> Tensor

Tensor.rsqrt(out : Tensor) -> Tensor

Tensor.rsqrt_() -> Tensor

Tensor.scatter(dim : int,
               index : Tensor,
               value : number) -> Tensor

Tensor.scatter(dim : int,
               index : Tensor,
               src : Tensor) -> Tensor

Tensor.scatter(dim : int,
               index : Tensor,
               src : Tensor,
               reduce : str) -> Tensor

Tensor.scatter(dim : int,
               index : Tensor,
               value : number,
               reduce : str) -> Tensor

Tensor.scatter(dim : int,
               index : Tensor,
               src : Tensor,
               out : Tensor) -> Tensor

Tensor.scatter(dim : int,
               index : Tensor,
               value : number,
               out : Tensor) -> Tensor

Tensor.scatter(dim : int,
               index : Tensor,
               src : Tensor,
               reduce : str,
               out : Tensor) -> Tensor

Tensor.scatter(dim : int,
               index : Tensor,
               value : number,
               reduce : str,
               out : Tensor) -> Tensor

Tensor.scatter(dim : str,
               index : Tensor,
               src : Tensor) -> Tensor

Tensor.scatter(dim : str,
               index : Tensor,
               value : number) -> Tensor

Tensor.scatter_(dim : int,
                index : Tensor,
                src : Tensor) -> Tensor

Tensor.scatter_(dim : int,
                index : Tensor,
                value : number) -> Tensor

Tensor.scatter_(dim : int,
                index : Tensor,
                src : Tensor,
                reduce : str) -> Tensor

Tensor.scatter_(dim : int,
                index : Tensor,
                value : number,
                reduce : str) -> Tensor

Tensor.scatter_add(dim : int,
                   index : Tensor,
                   src : Tensor) -> Tensor

Tensor.scatter_add(dim : int,
                   index : Tensor,
                   src : Tensor,
                   out : Tensor) -> Tensor

Tensor.scatter_add(dim : str,
                   index : Tensor,
                   src : Tensor) -> Tensor

Tensor.scatter_add_(dim : int,
                    index : Tensor,
                    src : Tensor) -> Tensor

Tensor.scatter_reduce(dim : int,
                      index : Tensor,
                      src : Tensor,
                      reduce : str,
                      include_self : bool=True) -> Tensor

Tensor.scatter_reduce(dim : int,
                      index : Tensor,
                      src : Tensor,
                      reduce : str,
                      include_self : bool=True,
                      out : Tensor) -> Tensor

Tensor.scatter_reduce_(dim : int,
                       index : Tensor,
                       src : Tensor,
                       reduce : str,
                       include_self : bool=True) -> Tensor

Tensor.select(dim : str,
              index : int) -> Tensor

Tensor.select(dim : int,
              index : int) -> Tensor

Tensor.select_scatter(src : Tensor,
                      dim : int,
                      index : int) -> Tensor

Tensor.select_scatter(src : Tensor,
                      dim : int,
                      index : int,
                      out : Tensor) -> Tensor

Tensor.set_(source : Storage,
            storage_offset : int,
            size : List[int],
            stride : List[int]=[]) -> Tensor

Tensor.set_(source : Tensor) -> Tensor

Tensor.set_() -> Tensor

Tensor.set_(source : Storage) -> Tensor

Tensor.set_(source : Tensor,
            storage_offset : int,
            size : List[int],
            stride : List[int]=[]) -> Tensor

Tensor.sgn() -> Tensor

Tensor.sgn(out : Tensor) -> Tensor

Tensor.sgn_() -> Tensor

Tensor.sigmoid() -> Tensor

Tensor.sigmoid(out : Tensor) -> Tensor

Tensor.sigmoid_() -> Tensor

Tensor.sign() -> Tensor

Tensor.sign(out : Tensor) -> Tensor

Tensor.sign_() -> Tensor

Tensor.signbit() -> Tensor

Tensor.signbit(out : Tensor) -> Tensor

Tensor.sin() -> Tensor

Tensor.sin(out : Tensor) -> Tensor

Tensor.sin_() -> Tensor

Tensor.sinc() -> Tensor

Tensor.sinc(out : Tensor) -> Tensor

Tensor.sinc_() -> Tensor

Tensor.sinh() -> Tensor

Tensor.sinh(out : Tensor) -> Tensor

Tensor.sinh_() -> Tensor

Tensor.size(dim : int) -> int

Tensor.size(dim : str) -> int

Tensor.size() -> List[int]

Tensor.slice_inverse(src : Tensor,
                     dim : int=0,
                     start : Optional[int],
                     end : Optional[int],
                     step : int=1) -> Tensor

Tensor.slice_scatter(src : Tensor,
                     dim : int=0,
                     start : Optional[int],
                     end : Optional[int],
                     step : int=1) -> Tensor

Tensor.slice_scatter(src : Tensor,
                     dim : int=0,
                     start : Optional[int],
                     end : Optional[int],
                     step : int=1,
                     out : Tensor) -> Tensor

Tensor.slogdet() -> Tuple[Tensor, Tensor]

Tensor.slogdet(sign : Tensor,
               logabsdet : Tensor) -> Tuple[Tensor, Tensor]

Tensor.smm(mat2 : Tensor) -> Tensor

Tensor.softmax(dim : int,
               dtype : Optional[int]) -> Tensor

Tensor.softmax(dim : str,
               dtype : Optional[int]) -> Tensor

Tensor.softmax(dim : int,
               dtype : Optional[int],
               out : Tensor) -> Tensor

Tensor.sort(dim : int=-1,
            descending : bool=False) -> Tuple[Tensor, Tensor]

Tensor.sort(stable : Optional[bool],
            dim : int=-1,
            descending : bool=False) -> Tuple[Tensor, Tensor]

Tensor.sort(stable : Optional[bool],
            dim : int=-1,
            descending : bool=False,
            values : Tensor,
            indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.sort(dim : int=-1,
            descending : bool=False,
            values : Tensor,
            indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.sort(dim : str,
            descending : bool=False) -> Tuple[Tensor, Tensor]

Tensor.sort(dim : str,
            descending : bool=False,
            values : Tensor,
            indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.sort(stable : Optional[bool],
            dim : str,
            descending : bool=False) -> Tuple[Tensor, Tensor]

Tensor.sort(stable : Optional[bool],
            dim : str,
            descending : bool=False,
            values : Tensor,
            indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.sparse_dim() -> int

Tensor.sparse_mask(mask : Tensor,
                   out : Tensor) -> Tensor

Tensor.sparse_mask(mask : Tensor) -> Tensor

Tensor.sparse_resize_(size : List[int],
                      sparse_dim : int,
                      dense_dim : int) -> Tensor

Tensor.sparse_resize_and_clear_(size : List[int],
                                sparse_dim : int,
                                dense_dim : int) -> Tensor

Tensor.split(split_size : int,
             dim : int=0) -> List[Tensor]

Tensor.split(split_size : List[int],
             dim : int=0) -> List[Tensor]

Tensor.split(split_sizes : List[int],
             dim : int=0) -> List[Tensor]

Tensor.split_with_sizes(split_sizes : List[int],
                        dim : int=0) -> List[Tensor]

Tensor.sqrt() -> Tensor

Tensor.sqrt(out : Tensor) -> Tensor

Tensor.sqrt_() -> Tensor

Tensor.square() -> Tensor

Tensor.square(out : Tensor) -> Tensor

Tensor.square_() -> Tensor

Tensor.squeeze() -> Tensor

Tensor.squeeze(dim : int) -> Tensor

Tensor.squeeze(dim : List[int]) -> Tensor

Tensor.squeeze(dim : str) -> Tensor

Tensor.squeeze_() -> Tensor

Tensor.squeeze_(dim : int) -> Tensor

Tensor.squeeze_(dim : List[int]) -> Tensor

Tensor.squeeze_(dim : str) -> Tensor

Tensor.sspaddmm(mat1 : Tensor,
                mat2 : Tensor,
                beta : number=1,
                alpha : number=1,
                out : Tensor) -> Tensor

Tensor.sspaddmm(mat1 : Tensor,
                mat2 : Tensor,
                beta : number=1,
                alpha : number=1) -> Tensor

Tensor.std(unbiased : bool=True) -> Tensor

Tensor.std(dim : Optional[List[int]],
           unbiased : bool=True,
           keepdim : bool=False) -> Tensor

Tensor.std(dim : Optional[List[int]],
           correction : Optional[number],
           keepdim : bool=False) -> Tensor

Tensor.std(dim : List[str],
           unbiased : bool=True,
           keepdim : bool=False) -> Tensor

Tensor.std(dim : List[str],
           unbiased : bool=True,
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.std(dim : Optional[List[int]],
           unbiased : bool=True,
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.std(dim : Optional[List[int]],
           correction : Optional[number],
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.std(dim : List[str],
           correction : Optional[number],
           keepdim : bool=False) -> Tensor

Tensor.std(dim : List[str],
           correction : Optional[number],
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.stft(n_fft : int,
            hop_length : Optional[int],
            win_length : Optional[int],
            window : Optional[Tensor],
            normalized : bool=False,
            onesided : Optional[bool],
            return_complex : Optional[bool],
            align_to_window : Optional[bool]) -> Tensor

Tensor.stft(n_fft : int,
            hop_length : Optional[int],
            win_length : Optional[int],
            window : Optional[Tensor],
            center : bool=True,
            pad_mode : str=reflect,
            normalized : bool=False,
            onesided : Optional[bool],
            return_complex : Optional[bool],
            align_to_window : Optional[bool]) -> Tensor

Tensor.storage_offset() -> int

Tensor.stride(dim : int) -> int

Tensor.stride(dim : str) -> int

Tensor.stride() -> List[int]

Tensor.sub(other : Tensor,
           alpha : number=1) -> Tensor

Tensor.sub(other : number,
           alpha : number=1) -> Tensor

Tensor.sub(other : Tensor,
           alpha : number=1,
           out : Tensor) -> Tensor

Tensor.sub(other : number,
           alpha : number=1,
           out : Tensor) -> Tensor

Tensor.sub_(other : Tensor,
            alpha : number=1) -> Tensor

Tensor.sub_(other : number,
            alpha : number=1) -> Tensor

Tensor.subtract(other : Tensor,
                alpha : number=1) -> Tensor

Tensor.subtract(other : Tensor,
                alpha : number=1,
                out : Tensor) -> Tensor

Tensor.subtract(other : number,
                alpha : number=1) -> Tensor

Tensor.subtract_(other : Tensor,
                 alpha : number=1) -> Tensor

Tensor.subtract_(other : number,
                 alpha : number=1) -> Tensor

Tensor.sum(dim : Optional[List[int]],
           keepdim : bool=False,
           dtype : Optional[int]) -> Tensor

Tensor.sum(dtype : Optional[int]) -> Tensor

Tensor.sum(dim : List[str],
           keepdim : bool=False,
           dtype : Optional[int]) -> Tensor

Tensor.sum(dim : List[str],
           keepdim : bool=False,
           dtype : Optional[int],
           out : Tensor) -> Tensor

Tensor.sum(dim : Optional[List[int]],
           keepdim : bool=False,
           dtype : Optional[int],
           out : Tensor) -> Tensor

Tensor.sum(dtype : Optional[int],
           out : Tensor) -> Tensor

Tensor.sum_to_size(size : List[int]) -> Tensor

Tensor.svd(some : bool=True,
           compute_uv : bool=True) -> Tuple[Tensor, Tensor, Tensor]

Tensor.svd(some : bool=True,
           compute_uv : bool=True,
           U : Tensor,
           S : Tensor,
           V : Tensor) -> Tuple[Tensor, Tensor, Tensor]

Tensor.swapaxes(axis0 : int,
                axis1 : int) -> Tensor

Tensor.swapaxes_(axis0 : int,
                 axis1 : int) -> Tensor

Tensor.swapdims(dim0 : int,
                dim1 : int) -> Tensor

Tensor.swapdims_(dim0 : int,
                 dim1 : int) -> Tensor

Tensor.t() -> Tensor

Tensor.t_() -> Tensor

Tensor.take(index : Tensor) -> Tensor

Tensor.take(index : Tensor,
            out : Tensor) -> Tensor

Tensor.take_along_dim(indices : Tensor,
                      dim : Optional[int]) -> Tensor

Tensor.take_along_dim(indices : Tensor,
                      dim : Optional[int],
                      out : Tensor) -> Tensor

Tensor.tan() -> Tensor

Tensor.tan(out : Tensor) -> Tensor

Tensor.tan_() -> Tensor

Tensor.tanh() -> Tensor

Tensor.tanh(out : Tensor) -> Tensor

Tensor.tanh_() -> Tensor

Tensor.tensor_split(sections : int,
                    dim : int=0) -> List[Tensor]

Tensor.tensor_split(indices : List[int],
                    dim : int=0) -> List[Tensor]

Tensor.tensor_split(tensor_indices_or_sections : Tensor,
                    dim : int=0) -> List[Tensor]

Tensor.tile(dims : List[int]) -> Tensor

Tensor.to(device : Device,
          dtype : int,
          non_blocking : bool=False,
          copy : bool=False,
          memory_format : Optional[int]) -> Tensor

Tensor.to(dtype : int,
          non_blocking : bool=False,
          copy : bool=False,
          memory_format : Optional[int]) -> Tensor

Tensor.to(other : Tensor,
          non_blocking : bool=False,
          copy : bool=False,
          memory_format : Optional[int]) -> Tensor

Tensor.to(dtype : Optional[int],
          layout : Optional[int],
          device : Optional[Device],
          pin_memory : Optional[bool],
          non_blocking : bool=False,
          copy : bool=False,
          memory_format : Optional[int]) -> Tensor

Tensor.to(device : Optional[Device],
          dtype : Optional[int],
          non_blocking : bool=False,
          copy : bool=False) -> Tensor

Tensor.to(dtype : Optional[int],
          non_blocking : bool=False,
          copy : bool=False) -> Tensor

Tensor.to(non_blocking : bool=False,
          copy : bool=False) -> Tensor

Tensor.to_dense(dtype : Optional[int],
                masked_grad : Optional[bool]) -> Tensor

Tensor.to_mkldnn(dtype : Optional[int]) -> Tensor

Tensor.to_mkldnn(dtype : Optional[int],
                 out : Tensor) -> Tensor

Tensor.to_padded_tensor(padding : float,
                        output_size : Optional[List[int]],
                        out : Tensor) -> Tensor

Tensor.to_padded_tensor(padding : float,
                        output_size : Optional[List[int]]) -> Tensor

Tensor.to_sparse(sparse_dim : int) -> Tensor

Tensor.to_sparse(layout : Optional[int],
                 blocksize : Optional[List[int]],
                 dense_dim : Optional[int]) -> Tensor

Tensor.to_sparse_bsc(blocksize : List[int],
                     dense_dim : Optional[int]) -> Tensor

Tensor.to_sparse_bsr(blocksize : List[int],
                     dense_dim : Optional[int]) -> Tensor

Tensor.to_sparse_csc(dense_dim : Optional[int]) -> Tensor

Tensor.to_sparse_csr(dense_dim : Optional[int]) -> Tensor

Tensor.topk(k : int,
            dim : int=-1,
            largest : bool=True,
            sorted : bool=True) -> Tuple[Tensor, Tensor]

Tensor.topk(k : int,
            dim : int=-1,
            largest : bool=True,
            sorted : bool=True,
            values : Tensor,
            indices : Tensor) -> Tuple[Tensor, Tensor]

Tensor.trace() -> Tensor

Tensor.trace(out : Tensor) -> Tensor

Tensor.transpose(dim0 : int,
                 dim1 : int) -> Tensor

Tensor.transpose(dim0 : str,
                 dim1 : str) -> Tensor

Tensor.transpose_(dim0 : int,
                  dim1 : int) -> Tensor

Tensor.triangular_solve(A : Tensor,
                        upper : bool=True,
                        transpose : bool=False,
                        unitriangular : bool=False) -> Tuple[Tensor, Tensor]

Tensor.triangular_solve(A : Tensor,
                        upper : bool=True,
                        transpose : bool=False,
                        unitriangular : bool=False,
                        X : Tensor,
                        M : Tensor) -> Tuple[Tensor, Tensor]

Tensor.tril(diagonal : int=0) -> Tensor

Tensor.tril(diagonal : int=0,
            out : Tensor) -> Tensor

Tensor.tril_(diagonal : int=0) -> Tensor

Tensor.triu(diagonal : int=0) -> Tensor

Tensor.triu(diagonal : int=0,
            out : Tensor) -> Tensor

Tensor.triu_(diagonal : int=0) -> Tensor

Tensor.true_divide(other : Tensor) -> Tensor

Tensor.true_divide(other : number) -> Tensor

Tensor.true_divide(other : Tensor,
                   out : Tensor) -> Tensor

Tensor.true_divide_(other : Tensor) -> Tensor

Tensor.true_divide_(other : number) -> Tensor

Tensor.trunc() -> Tensor

Tensor.trunc(out : Tensor) -> Tensor

Tensor.trunc_() -> Tensor

Tensor.type_as(other : Tensor) -> Tensor

Tensor.unbind(dim : int=0) -> List[Tensor]

Tensor.unbind(dim : str) -> List[Tensor]

Tensor.unflatten(dim : int,
                 sizes : List[int]) -> Tensor

Tensor.unflatten(dim : str,
                 sizes : List[int],
                 names : List[str]) -> Tensor

Tensor.unfold(dimension : int,
              size : int,
              step : int) -> Tensor

Tensor.uniform_(from : float=0.0,
                to : float=1.0,
                generator : Optional[Generator]) -> Tensor

Tensor.unique_consecutive(return_inverse : bool=False,
                          return_counts : bool=False,
                          dim : Optional[int]) -> Tuple[Tensor, Tensor, Tensor]

Tensor.unique_consecutive(return_inverse : bool=False,
                          return_counts : bool=False,
                          dim : Optional[int],
                          out0 : Tensor,
                          out1 : Tensor,
                          out2 : Tensor) -> Tuple[Tensor, Tensor, Tensor]

Tensor.unsafe_chunk(chunks : int,
                    dim : int=0) -> List[Tensor]

Tensor.unsafe_split(split_size : int,
                    dim : int=0) -> List[Tensor]

Tensor.unsafe_split(split_size : int,
                    dim : int=0,
                    out : List[Tensor]) -> Tuple[]

Tensor.unsafe_split_with_sizes(split_sizes : List[int],
                               dim : int=0) -> List[Tensor]

Tensor.unsafe_split_with_sizes(split_sizes : List[int],
                               dim : int=0,
                               out : List[Tensor]) -> Tuple[]

Tensor.unsqueeze(dim : int) -> Tensor

Tensor.unsqueeze_(dim : int) -> Tensor

Tensor.values() -> Tensor

Tensor.var(unbiased : bool=True) -> Tensor

Tensor.var(dim : Optional[List[int]],
           unbiased : bool=True,
           keepdim : bool=False) -> Tensor

Tensor.var(dim : Optional[List[int]],
           correction : Optional[number],
           keepdim : bool=False) -> Tensor

Tensor.var(dim : List[str],
           unbiased : bool=True,
           keepdim : bool=False) -> Tensor

Tensor.var(dim : List[str],
           unbiased : bool=True,
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.var(dim : Optional[List[int]],
           unbiased : bool=True,
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.var(dim : Optional[List[int]],
           correction : Optional[number],
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.var(dim : List[str],
           correction : Optional[number],
           keepdim : bool=False) -> Tensor

Tensor.var(dim : List[str],
           correction : Optional[number],
           keepdim : bool=False,
           out : Tensor) -> Tensor

Tensor.vdot(other : Tensor) -> Tensor

Tensor.vdot(other : Tensor,
            out : Tensor) -> Tensor

Tensor.view(size : List[int]) -> Tensor

Tensor.view(dtype : int) -> Tensor

Tensor.view_as(other : Tensor) -> Tensor

Tensor.vsplit(sections : int) -> List[Tensor]

Tensor.vsplit(indices : List[int]) -> List[Tensor]

Tensor.xlogy(other : Tensor) -> Tensor

Tensor.xlogy(other : number) -> Tensor

Tensor.xlogy(other : Tensor,
             out : Tensor) -> Tensor

Tensor.xlogy(other : number,
             out : Tensor) -> Tensor

Tensor.xlogy_(other : Tensor) -> Tensor

Tensor.xlogy_(other : number) -> Tensor

Tensor.zero_() -> Tensor

支援的 PyTorch 函式

torch.nn.functional.adaptive_avg_pool2d(input : Tensor,
                                        output_size : List[int]) -> Tensor

torch.nn.functional.adaptive_avg_pool3d(input : Tensor,
                                        output_size : List[int]) -> Tensor

torch.nn.functional.adaptive_max_pool1d_with_indices(input : Tensor,
                                                     output_size : List[int],
                                                     return_indices : bool=False) -> Tuple[Tensor, Tensor]

torch.nn.functional.adaptive_max_pool2d_with_indices(input : Tensor,
                                                     output_size : List[int],
                                                     return_indices : bool=False) -> Tuple[Tensor, Tensor]

torch.nn.functional.adaptive_max_pool3d_with_indices(input : Tensor,
                                                     output_size : List[int],
                                                     return_indices : bool=False) -> Tuple[Tensor, Tensor]

torch.nn.functional.affine_grid(theta : Tensor,
                                size : List[int],
                                align_corners : Optional[bool]) -> Tensor

torch.nn.functional.alpha_dropout(input : Tensor,
                                  p : float=0.5,
                                  training : bool=False,
                                  inplace : bool=False) -> Tensor

torch.nn.functional.assert_int_or_pair(arg : List[int],
                                       arg_name : str,
                                       message : str) -> NoneType

torch.nn.functional.batch_norm(input : Tensor,
                               running_mean : Optional[Tensor],
                               running_var : Optional[Tensor],
                               weight : Optional[Tensor],
                               bias : Optional[Tensor],
                               training : bool=False,
                               momentum : float=0.1,
                               eps : float=1e-05) -> Tensor

torch.nn.functional.binary_cross_entropy(input : Tensor,
                                         target : Tensor,
                                         weight : Optional[Tensor],
                                         size_average : Optional[bool],
                                         reduce : Optional[bool],
                                         reduction : str=mean) -> Tensor

torch.nn.functional.binary_cross_entropy_with_logits(input : Tensor,
                                                     target : Tensor,
                                                     weight : Optional[Tensor],
                                                     size_average : Optional[bool],
                                                     reduce : Optional[bool],
                                                     reduction : str=mean,
                                                     pos_weight : Optional[Tensor]) -> Tensor

torch.nn.functional.celu(input : Tensor,
                         alpha : float=1.0,
                         inplace : bool=False) -> Tensor

torch.nn.functional.cosine_embedding_loss(input1 : Tensor,
                                          input2 : Tensor,
                                          target : Tensor,
                                          margin : float=0.0,
                                          size_average : Optional[bool],
                                          reduce : Optional[bool],
                                          reduction : str=mean) -> Tensor

torch.nn.functional.cross_entropy(input : Tensor,
                                  target : Tensor,
                                  weight : Optional[Tensor],
                                  size_average : Optional[bool],
                                  ignore_index : int=-100,
                                  reduce : Optional[bool],
                                  reduction : str=mean,
                                  label_smoothing : float=0.0) -> Tensor

torch.nn.functional.ctc_loss(log_probs : Tensor,
                             targets : Tensor,
                             input_lengths : Tensor,
                             target_lengths : Tensor,
                             blank : int=0,
                             reduction : str=mean,
                             zero_infinity : bool=False) -> Tensor

torch.nn.functional.dropout(input : Tensor,
                            p : float=0.5,
                            training : bool=True,
                            inplace : bool=False) -> Tensor

torch.nn.functional.dropout1d(input : Tensor,
                              p : float=0.5,
                              training : bool=True,
                              inplace : bool=False) -> Tensor

torch.nn.functional.dropout2d(input : Tensor,
                              p : float=0.5,
                              training : bool=True,
                              inplace : bool=False) -> Tensor

torch.nn.functional.dropout3d(input : Tensor,
                              p : float=0.5,
                              training : bool=True,
                              inplace : bool=False) -> Tensor

torch.nn.functional.elu(input : Tensor,
                        alpha : float=1.0,
                        inplace : bool=False) -> Tensor

torch.nn.functional.embedding(input : Tensor,
                              weight : Tensor,
                              padding_idx : Optional[int],
                              max_norm : Optional[float],
                              norm_type : float=2.0,
                              scale_grad_by_freq : bool=False,
                              sparse : bool=False) -> Tensor

torch.nn.functional.embedding_bag(input : Tensor,
                                  weight : Tensor,
                                  offsets : Optional[Tensor],
                                  max_norm : Optional[float],
                                  norm_type : float=2.0,
                                  scale_grad_by_freq : bool=False,
                                  mode : str=mean,
                                  sparse : bool=False,
                                  per_sample_weights : Optional[Tensor],
                                  include_last_offset : bool=False,
                                  padding_idx : Optional[int]) -> Tensor

torch.nn.functional.feature_alpha_dropout(input : Tensor,
                                          p : float=0.5,
                                          training : bool=False,
                                          inplace : bool=False) -> Tensor

torch.nn.functional.fold(input : Tensor,
                         output_size : List[int],
                         kernel_size : List[int],
                         dilation : List[int]=1,
                         padding : List[int]=0,
                         stride : List[int]=1) -> Tensor

torch.nn.functional.fractional_max_pool2d_with_indices(input : Tensor,
                                                       kernel_size : List[int],
                                                       output_size : Optional[List[int]],
                                                       output_ratio : Optional[List[float]],
                                                       return_indices : bool=False,
                                                       _random_samples : Optional[Tensor]) -> Tuple[Tensor, Tensor]

torch.nn.functional.fractional_max_pool3d_with_indices(input : Tensor,
                                                       kernel_size : List[int],
                                                       output_size : Optional[List[int]],
                                                       output_ratio : Optional[List[float]],
                                                       return_indices : bool=False,
                                                       _random_samples : Optional[Tensor]) -> Tuple[Tensor, Tensor]

torch.nn.functional.gaussian_nll_loss(input : Tensor,
                                      target : Tensor,
                                      var : Union[Tensor, float],
                                      full : bool=False,
                                      eps : float=1e-06,
                                      reduction : str=mean) -> Tensor

torch.nn.functional.glu(input : Tensor,
                        dim : int=-1) -> Tensor

torch.nn.functional.grid_sample(input : Tensor,
                                grid : Tensor,
                                mode : str=bilinear,
                                padding_mode : str=zeros,
                                align_corners : Optional[bool]) -> Tensor

torch.nn.functional.group_norm(input : Tensor,
                               num_groups : int,
                               weight : Optional[Tensor],
                               bias : Optional[Tensor],
                               eps : float=1e-05) -> Tensor

torch.nn.functional.gumbel_softmax(logits : Tensor,
                                   tau : float=1.0,
                                   hard : bool=False,
                                   eps : float=1e-10,
                                   dim : int=-1) -> Tensor

torch.nn.functional.hardsigmoid(input : Tensor,
                                inplace : bool=False) -> Tensor

torch.nn.functional.hardswish(input : Tensor,
                              inplace : bool=False) -> Tensor

torch.nn.functional.hardtanh(input : Tensor,
                             min_val : float=-1.0,
                             max_val : float=1.0,
                             inplace : bool=False) -> Tensor

torch.nn.functional.hinge_embedding_loss(input : Tensor,
                                         target : Tensor,
                                         margin : float=1.0,
                                         size_average : Optional[bool],
                                         reduce : Optional[bool],
                                         reduction : str=mean) -> Tensor

torch.nn.functional.huber_loss(input : Tensor,
                               target : Tensor,
                               reduction : str=mean,
                               delta : float=1.0,
                               weight : Optional[Tensor]) -> Tensor

torch.nn.functional.instance_norm(input : Tensor,
                                  running_mean : Optional[Tensor],
                                  running_var : Optional[Tensor],
                                  weight : Optional[Tensor],
                                  bias : Optional[Tensor],
                                  use_input_stats : bool=True,
                                  momentum : float=0.1,
                                  eps : float=1e-05) -> Tensor

torch.nn.functional.kl_div(input : Tensor,
                           target : Tensor,
                           size_average : Optional[bool],
                           reduce : Optional[bool],
                           reduction : str=mean,
                           log_target : bool=False) -> Tensor

torch.nn.functional.l1_loss(input : Tensor,
                            target : Tensor,
                            size_average : Optional[bool],
                            reduce : Optional[bool],
                            reduction : str=mean,
                            weight : Optional[Tensor]) -> Tensor

torch.nn.functional.layer_norm(input : Tensor,
                               normalized_shape : List[int],
                               weight : Optional[Tensor],
                               bias : Optional[Tensor],
                               eps : float=1e-05) -> Tensor

torch.nn.functional.leaky_relu(input : Tensor,
                               negative_slope : float=0.01,
                               inplace : bool=False) -> Tensor

torch.nn.functional.local_response_norm(input : Tensor,
                                        size : int,
                                        alpha : float=0.0001,
                                        beta : float=0.75,
                                        k : float=1.0) -> Tensor

torch.nn.functional.log_softmax(input : Tensor,
                                dim : Optional[int],
                                _stacklevel : int=3,
                                dtype : Optional[int]) -> Tensor

torch.nn.functional.lp_pool1d(input : Tensor,
                              norm_type : Union[float, int],
                              kernel_size : int,
                              stride : Optional[List[int]],
                              ceil_mode : bool=False) -> Tensor

torch.nn.functional.lp_pool2d(input : Tensor,
                              norm_type : Union[float, int],
                              kernel_size : List[int],
                              stride : Optional[List[int]],
                              ceil_mode : bool=False) -> Tensor

torch.nn.functional.lp_pool3d(input : Tensor,
                              norm_type : Union[float, int],
                              kernel_size : List[int],
                              stride : Optional[List[int]],
                              ceil_mode : bool=False) -> Tensor

torch.nn.functional.margin_ranking_loss(input1 : Tensor,
                                        input2 : Tensor,
                                        target : Tensor,
                                        margin : float=0.0,
                                        size_average : Optional[bool],
                                        reduce : Optional[bool],
                                        reduction : str=mean) -> Tensor

torch.nn.functional.max_pool1d_with_indices(input : Tensor,
                                            kernel_size : List[int],
                                            stride : Optional[List[int]],
                                            padding : List[int]=0,
                                            dilation : List[int]=1,
                                            ceil_mode : bool=False,
                                            return_indices : bool=False) -> Tuple[Tensor, Tensor]

torch.nn.functional.max_pool2d_with_indices(input : Tensor,
                                            kernel_size : List[int],
                                            stride : Optional[List[int]],
                                            padding : List[int]=0,
                                            dilation : List[int]=1,
                                            ceil_mode : bool=False,
                                            return_indices : bool=False) -> Tuple[Tensor, Tensor]

torch.nn.functional.max_pool3d_with_indices(input : Tensor,
                                            kernel_size : List[int],
                                            stride : Optional[List[int]],
                                            padding : List[int]=0,
                                            dilation : List[int]=1,
                                            ceil_mode : bool=False,
                                            return_indices : bool=False) -> Tuple[Tensor, Tensor]

torch.nn.functional.max_unpool1d(input : Tensor,
                                 indices : Tensor,
                                 kernel_size : List[int],
                                 stride : Optional[List[int]],
                                 padding : List[int]=0,
                                 output_size : Optional[List[int]]) -> Tensor

torch.nn.functional.max_unpool2d(input : Tensor,
                                 indices : Tensor,
                                 kernel_size : List[int],
                                 stride : Optional[List[int]],
                                 padding : List[int]=0,
                                 output_size : Optional[List[int]]) -> Tensor

torch.nn.functional.max_unpool3d(input : Tensor,
                                 indices : Tensor,
                                 kernel_size : List[int],
                                 stride : Optional[List[int]],
                                 padding : List[int]=0,
                                 output_size : Optional[List[int]]) -> Tensor

torch.nn.functional.mish(input : Tensor,
                         inplace : bool=False) -> Tensor

torch.nn.functional.mse_loss(input : Tensor,
                             target : Tensor,
                             size_average : Optional[bool],
                             reduce : Optional[bool],
                             reduction : str=mean,
                             weight : Optional[Tensor]) -> Tensor

torch.nn.functional.multi_head_attention_forward(query : Tensor,
                                                 key : Tensor,
                                                 value : Tensor,
                                                 embed_dim_to_check : int,
                                                 num_heads : int,
                                                 in_proj_weight : Optional[Tensor],
                                                 in_proj_bias : Optional[Tensor],
                                                 bias_k : Optional[Tensor],
                                                 bias_v : Optional[Tensor],
                                                 add_zero_attn : bool,
                                                 dropout_p : float,
                                                 out_proj_weight : Tensor,
                                                 out_proj_bias : Optional[Tensor],
                                                 training : bool=True,
                                                 key_padding_mask : Optional[Tensor],
                                                 need_weights : bool=True,
                                                 attn_mask : Optional[Tensor],
                                                 use_separate_proj_weight : bool=False,
                                                 q_proj_weight : Optional[Tensor],
                                                 k_proj_weight : Optional[Tensor],
                                                 v_proj_weight : Optional[Tensor],
                                                 static_k : Optional[Tensor],
                                                 static_v : Optional[Tensor],
                                                 average_attn_weights : bool=True,
                                                 is_causal : bool=False) -> Tuple[Tensor, Optional[Tensor]]

torch.nn.functional.multi_margin_loss(input : Tensor,
                                      target : Tensor,
                                      p : int=1,
                                      margin : float=1.0,
                                      weight : Optional[Tensor],
                                      size_average : Optional[bool],
                                      reduce : Optional[bool],
                                      reduction : str=mean) -> Tensor

torch.nn.functional.multilabel_margin_loss(input : Tensor,
                                           target : Tensor,
                                           size_average : Optional[bool],
                                           reduce : Optional[bool],
                                           reduction : str=mean) -> Tensor

torch.nn.functional.multilabel_soft_margin_loss(input : Tensor,
                                                target : Tensor,
                                                weight : Optional[Tensor],
                                                size_average : Optional[bool],
                                                reduce : Optional[bool],
                                                reduction : str=mean) -> Tensor

torch.nn.functional.nll_loss(input : Tensor,
                             target : Tensor,
                             weight : Optional[Tensor],
                             size_average : Optional[bool],
                             ignore_index : int=-100,
                             reduce : Optional[bool],
                             reduction : str=mean) -> Tensor

torch.nn.functional.normalize(input : Tensor,
                              p : float=2.0,
                              dim : int=1,
                              eps : float=1e-12,
                              out : Optional[Tensor]) -> Tensor

torch.nn.functional.pad(input : Tensor,
                        pad : List[int],
                        mode : str=constant,
                        value : Optional[float]) -> Tensor

torch.nn.functional.poisson_nll_loss(input : Tensor,
                                     target : Tensor,
                                     log_input : bool=True,
                                     full : bool=False,
                                     size_average : Optional[bool],
                                     eps : float=1e-08,
                                     reduce : Optional[bool],
                                     reduction : str=mean) -> Tensor

torch.nn.functional.relu(input : Tensor,
                         inplace : bool=False) -> Tensor

torch.nn.functional.relu6(input : Tensor,
                          inplace : bool=False) -> Tensor

torch.nn.functional.rms_norm(input : Tensor,
                             normalized_shape : List[int],
                             weight : Optional[Tensor],
                             eps : Optional[float]) -> Tensor

torch.nn.functional.rrelu(input : Tensor,
                          lower : float=0.125,
                          upper : float=0.3333333333333333,
                          training : bool=False,
                          inplace : bool=False) -> Tensor

torch.nn.functional.selu(input : Tensor,
                         inplace : bool=False) -> Tensor

torch.nn.functional.sigmoid(input : Tensor) -> Tensor

torch.nn.functional.silu(input : Tensor,
                         inplace : bool=False) -> Tensor

torch.nn.functional.smooth_l1_loss(input : Tensor,
                                   target : Tensor,
                                   size_average : Optional[bool],
                                   reduce : Optional[bool],
                                   reduction : str=mean,
                                   beta : float=1.0) -> Tensor

torch.nn.functional.soft_margin_loss(input : Tensor,
                                     target : Tensor,
                                     size_average : Optional[bool],
                                     reduce : Optional[bool],
                                     reduction : str=mean) -> Tensor

torch.nn.functional.softmax(input : Tensor,
                            dim : Optional[int],
                            _stacklevel : int=3,
                            dtype : Optional[int]) -> Tensor

torch.nn.functional.softmin(input : Tensor,
                            dim : Optional[int],
                            _stacklevel : int=3,
                            dtype : Optional[int]) -> Tensor

torch.nn.functional.softsign(input : Tensor) -> Tensor

torch.nn.functional.tanh(input : Tensor) -> Tensor

torch.nn.functional.tanhshrink(input : Tensor) -> Tensor

torch.nn.functional.threshold(input : Tensor,
                              threshold : float,
                              value : float,
                              inplace : bool=False) -> Tensor

torch.nn.functional.triplet_margin_loss(anchor : Tensor,
                                        positive : Tensor,
                                        negative : Tensor,
                                        margin : float=1.0,
                                        p : float=2.0,
                                        eps : float=1e-06,
                                        swap : bool=False,
                                        size_average : Optional[bool],
                                        reduce : Optional[bool],
                                        reduction : str=mean) -> Tensor

torch.nn.functional.unfold(input : Tensor,
                           kernel_size : List[int],
                           dilation : List[int]=1,
                           padding : List[int]=0,
                           stride : List[int]=1) -> Tensor

torch.Generator(device : Optional[Device],
                seed : Optional[int]) -> Generator

torch.Size(sizes : List[int]) -> List[int]

torch.abs(self : Tensor) -> Tensor

torch.abs(self : Tensor,
          out : Tensor) -> Tensor

torch.abs_(self : Tensor) -> Tensor

torch.absolute(self : Tensor) -> Tensor

torch.absolute(self : Tensor,
               out : Tensor) -> Tensor

torch.acos(self : Tensor) -> Tensor

torch.acos(self : Tensor,
           out : Tensor) -> Tensor

torch.acos(a : int) -> float

torch.acos(a : float) -> float

torch.acos(a : complex) -> complex

torch.acos(a : number) -> number

torch.acos_(self : Tensor) -> Tensor

torch.acosh(self : Tensor) -> Tensor

torch.acosh(self : Tensor,
            out : Tensor) -> Tensor

torch.acosh(a : int) -> float

torch.acosh(a : float) -> float

torch.acosh(a : complex) -> complex

torch.acosh(a : number) -> number

torch.acosh_(self : Tensor) -> Tensor

torch.adaptive_avg_pool1d(self : Tensor,
                          output_size : List[int]) -> Tensor

torch.adaptive_avg_pool1d(self : Tensor,
                          output_size : List[int],
                          out : Tensor) -> Tensor

torch.adaptive_max_pool1d(self : Tensor,
                          output_size : List[int]) -> Tuple[Tensor, Tensor]

torch.add(self : Tensor,
          other : Tensor,
          alpha : number=1) -> Tensor

torch.add(self : Tensor,
          other : number,
          alpha : number=1) -> Tensor

torch.add(self : Tensor,
          other : Tensor,
          alpha : number=1,
          out : Tensor) -> Tensor

torch.add(self : Tensor,
          other : number,
          alpha : number=1,
          out : Tensor) -> Tensor

torch.add(a : List[t],
          b : List[t]) -> List[t]

torch.add(a : str,
          b : str) -> str

torch.add(a : int,
          b : int) -> int

torch.add(a : complex,
          b : complex) -> complex

torch.add(a : float,
          b : float) -> float

torch.add(a : int,
          b : complex) -> complex

torch.add(a : complex,
          b : int) -> complex

torch.add(a : float,
          b : complex) -> complex

torch.add(a : complex,
          b : float) -> complex

torch.add(a : int,
          b : float) -> float

torch.add(a : float,
          b : int) -> float

torch.add(a : number,
          b : number) -> number

torch.addbmm(self : Tensor,
             batch1 : Tensor,
             batch2 : Tensor,
             beta : number=1,
             alpha : number=1) -> Tensor

torch.addbmm(self : Tensor,
             batch1 : Tensor,
             batch2 : Tensor,
             beta : number=1,
             alpha : number=1,
             out : Tensor) -> Tensor

torch.addcdiv(self : Tensor,
              tensor1 : Tensor,
              tensor2 : Tensor,
              value : number=1) -> Tensor

torch.addcdiv(self : Tensor,
              tensor1 : Tensor,
              tensor2 : Tensor,
              value : number=1,
              out : Tensor) -> Tensor

torch.addcmul(self : Tensor,
              tensor1 : Tensor,
              tensor2 : Tensor,
              value : number=1) -> Tensor

torch.addcmul(self : Tensor,
              tensor1 : Tensor,
              tensor2 : Tensor,
              value : number=1,
              out : Tensor) -> Tensor

torch.addmm(self : Tensor,
            mat1 : Tensor,
            mat2 : Tensor,
            beta : number=1,
            alpha : number=1) -> Tensor

torch.addmm(self : Tensor,
            mat1 : Tensor,
            mat2 : Tensor,
            beta : number=1,
            alpha : number=1,
            out : Tensor) -> Tensor

torch.addmv(self : Tensor,
            mat : Tensor,
            vec : Tensor,
            beta : number=1,
            alpha : number=1) -> Tensor

torch.addmv(self : Tensor,
            mat : Tensor,
            vec : Tensor,
            beta : number=1,
            alpha : number=1,
            out : Tensor) -> Tensor

torch.addmv_(self : Tensor,
             mat : Tensor,
             vec : Tensor,
             beta : number=1,
             alpha : number=1) -> Tensor

torch.addr(self : Tensor,
           vec1 : Tensor,
           vec2 : Tensor,
           beta : number=1,
           alpha : number=1) -> Tensor

torch.addr(self : Tensor,
           vec1 : Tensor,
           vec2 : Tensor,
           beta : number=1,
           alpha : number=1,
           out : Tensor) -> Tensor

torch.adjoint(self : Tensor) -> Tensor

torch.affine_grid_generator(theta : Tensor,
                            size : List[int],
                            align_corners : bool) -> Tensor

torch.affine_grid_generator(theta : Tensor,
                            size : List[int],
                            align_corners : bool,
                            out : Tensor) -> Tensor

torch.alias_copy(self : Tensor) -> Tensor

torch.alias_copy(self : Tensor,
                 out : Tensor) -> Tensor

torch.align_tensors(tensors : List[Tensor]) -> List[Tensor]

torch.all(self : Tensor) -> Tensor

torch.all(self : Tensor,
          dim : int,
          keepdim : bool=False) -> Tensor

torch.all(self : Tensor,
          dim : Optional[List[int]],
          keepdim : bool=False) -> Tensor

torch.all(self : Tensor,
          dim : int,
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.all(self : Tensor,
          dim : Optional[List[int]],
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.all(self : Tensor,
          out : Tensor) -> Tensor

torch.all(self : Tensor,
          dim : str,
          keepdim : bool=False) -> Tensor

torch.all(self : Tensor,
          dim : str,
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.all(self : List[int]) -> bool

torch.all(self : List[float]) -> bool

torch.all(self : List[bool]) -> bool

torch.allclose(self : Tensor,
               other : Tensor,
               rtol : float=1e-05,
               atol : float=1e-08,
               equal_nan : bool=False) -> bool

torch.alpha_dropout(input : Tensor,
                    p : float,
                    train : bool) -> Tensor

torch.alpha_dropout_(self : Tensor,
                     p : float,
                     train : bool) -> Tensor

torch.amax(self : Tensor,
           dim : List[int]=[],
           keepdim : bool=False) -> Tensor

torch.amax(self : Tensor,
           dim : List[int]=[],
           keepdim : bool=False,
           out : Tensor) -> Tensor

torch.amin(self : Tensor,
           dim : List[int]=[],
           keepdim : bool=False) -> Tensor

torch.amin(self : Tensor,
           dim : List[int]=[],
           keepdim : bool=False,
           out : Tensor) -> Tensor

torch.aminmax(self : Tensor,
              dim : Optional[int],
              keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.aminmax(self : Tensor,
              dim : Optional[int],
              keepdim : bool=False,
              min : Tensor,
              max : Tensor) -> Tuple[Tensor, Tensor]

torch.angle(self : Tensor) -> Tensor

torch.angle(self : Tensor,
            out : Tensor) -> Tensor

torch.angle(a : int) -> float

torch.angle(a : float) -> float

torch.angle(a : complex) -> float

torch.angle(a : number) -> number

torch.any(self : Tensor) -> Tensor

torch.any(self : Tensor,
          dim : int,
          keepdim : bool=False) -> Tensor

torch.any(self : Tensor,
          dim : Optional[List[int]],
          keepdim : bool=False) -> Tensor

torch.any(self : Tensor,
          dim : int,
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.any(self : Tensor,
          dim : Optional[List[int]],
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.any(self : Tensor,
          out : Tensor) -> Tensor

torch.any(self : Tensor,
          dim : str,
          keepdim : bool=False) -> Tensor

torch.any(self : Tensor,
          dim : str,
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.any(self : List[str]) -> bool

torch.any(self : List[int]) -> bool

torch.any(self : List[float]) -> bool

torch.any(self : List[bool]) -> bool

torch.arange(end : number,
             dtype : Optional[int],
             layout : Optional[int],
             device : Optional[Device],
             pin_memory : Optional[bool]) -> Tensor

torch.arange(start : number,
             end : number,
             dtype : Optional[int],
             layout : Optional[int],
             device : Optional[Device],
             pin_memory : Optional[bool]) -> Tensor

torch.arange(start : number,
             end : number,
             step : number=1,
             dtype : Optional[int],
             layout : Optional[int],
             device : Optional[Device],
             pin_memory : Optional[bool]) -> Tensor

torch.arange(start : number,
             end : number,
             step : number=1,
             out : Tensor) -> Tensor

torch.arange(end : number,
             out : Tensor) -> Tensor

torch.arccos(self : Tensor) -> Tensor

torch.arccos(self : Tensor,
             out : Tensor) -> Tensor

torch.arccos_(self : Tensor) -> Tensor

torch.arccosh(self : Tensor) -> Tensor

torch.arccosh(self : Tensor,
              out : Tensor) -> Tensor

torch.arccosh_(self : Tensor) -> Tensor

torch.arcsin(self : Tensor) -> Tensor

torch.arcsin(self : Tensor,
             out : Tensor) -> Tensor

torch.arcsin_(self : Tensor) -> Tensor

torch.arcsinh(self : Tensor) -> Tensor

torch.arcsinh(self : Tensor,
              out : Tensor) -> Tensor

torch.arcsinh_(self : Tensor) -> Tensor

torch.arctan(self : Tensor) -> Tensor

torch.arctan(self : Tensor,
             out : Tensor) -> Tensor

torch.arctan2(self : Tensor,
              other : Tensor) -> Tensor

torch.arctan2(self : Tensor,
              other : Tensor,
              out : Tensor) -> Tensor

torch.arctan_(self : Tensor) -> Tensor

torch.arctanh(self : Tensor) -> Tensor

torch.arctanh(self : Tensor,
              out : Tensor) -> Tensor

torch.arctanh_(self : Tensor) -> Tensor

torch.argmax(self : Tensor,
             dim : Optional[int],
             keepdim : bool=False) -> Tensor

torch.argmax(self : Tensor,
             dim : Optional[int],
             keepdim : bool=False,
             out : Tensor) -> Tensor

torch.argmin(self : Tensor,
             dim : Optional[int],
             keepdim : bool=False) -> Tensor

torch.argmin(self : Tensor,
             dim : Optional[int],
             keepdim : bool=False,
             out : Tensor) -> Tensor

torch.argsort(self : Tensor,
              dim : int=-1,
              descending : bool=False) -> Tensor

torch.argsort(self : Tensor,
              stable : bool,
              dim : int=-1,
              descending : bool=False) -> Tensor

torch.argsort(self : Tensor,
              stable : bool,
              dim : int=-1,
              descending : bool=False,
              out : Tensor) -> Tensor

torch.argsort(self : Tensor,
              dim : str,
              descending : bool=False) -> Tensor

torch.argwhere(self : Tensor) -> Tensor

torch.as_strided(self : Tensor,
                 size : List[int],
                 stride : List[int],
                 storage_offset : Optional[int]) -> Tensor

torch.as_strided_(self : Tensor,
                  size : List[int],
                  stride : List[int],
                  storage_offset : Optional[int]) -> Tensor

torch.as_strided_copy(self : Tensor,
                      size : List[int],
                      stride : List[int],
                      storage_offset : Optional[int]) -> Tensor

torch.as_strided_copy(self : Tensor,
                      size : List[int],
                      stride : List[int],
                      storage_offset : Optional[int],
                      out : Tensor) -> Tensor

torch.as_strided_scatter(self : Tensor,
                         src : Tensor,
                         size : List[int],
                         stride : List[int],
                         storage_offset : Optional[int]) -> Tensor

torch.as_strided_scatter(self : Tensor,
                         src : Tensor,
                         size : List[int],
                         stride : List[int],
                         storage_offset : Optional[int],
                         out : Tensor) -> Tensor

torch.as_tensor(t : bool,
                dtype : Optional[int],
                device : Optional[Device]) -> Tensor

torch.as_tensor(t : float,
                dtype : Optional[int],
                device : Optional[Device]) -> Tensor

torch.as_tensor(t : int,
                dtype : Optional[int],
                device : Optional[Device]) -> Tensor

torch.as_tensor(t : complex,
                dtype : Optional[int],
                device : Optional[Device]) -> Tensor

torch.as_tensor(data : Tensor,
                dtype : Optional[int],
                device : Optional[Device]) -> Tensor

torch.as_tensor(data : List[t],
                dtype : Optional[int],
                device : Optional[Device]) -> Tensor

torch.asin(self : Tensor) -> Tensor

torch.asin(self : Tensor,
           out : Tensor) -> Tensor

torch.asin(a : int) -> float

torch.asin(a : float) -> float

torch.asin(a : complex) -> complex

torch.asin(a : number) -> number

torch.asin_(self : Tensor) -> Tensor

torch.asinh(self : Tensor) -> Tensor

torch.asinh(self : Tensor,
            out : Tensor) -> Tensor

torch.asinh(a : int) -> float

torch.asinh(a : float) -> float

torch.asinh(a : complex) -> complex

torch.asinh(a : number) -> number

torch.asinh_(self : Tensor) -> Tensor

torch.atan(self : Tensor) -> Tensor

torch.atan(self : Tensor,
           out : Tensor) -> Tensor

torch.atan(a : int) -> float

torch.atan(a : float) -> float

torch.atan(a : complex) -> complex

torch.atan(a : number) -> number

torch.atan2(self : Tensor,
            other : Tensor) -> Tensor

torch.atan2(self : Tensor,
            other : Tensor,
            out : Tensor) -> Tensor

torch.atan2(a : int,
            b : int) -> float

torch.atan2(a : float,
            b : float) -> float

torch.atan2(a : int,
            b : float) -> float

torch.atan2(a : float,
            b : int) -> float

torch.atan2(a : number,
            b : number) -> float

torch.atan_(self : Tensor) -> Tensor

torch.atanh(self : Tensor) -> Tensor

torch.atanh(self : Tensor,
            out : Tensor) -> Tensor

torch.atanh(a : int) -> float

torch.atanh(a : float) -> float

torch.atanh(a : complex) -> complex

torch.atanh(a : number) -> number

torch.atanh_(self : Tensor) -> Tensor

torch.atleast_1d(self : Tensor) -> Tensor

torch.atleast_1d(tensors : List[Tensor]) -> List[Tensor]

torch.atleast_2d(self : Tensor) -> Tensor

torch.atleast_2d(tensors : List[Tensor]) -> List[Tensor]

torch.atleast_3d(self : Tensor) -> Tensor

torch.atleast_3d(tensors : List[Tensor]) -> List[Tensor]

torch.avg_pool1d(self : Tensor,
                 kernel_size : List[int],
                 stride : List[int]=[],
                 padding : List[int]=[0],
                 ceil_mode : bool=False,
                 count_include_pad : bool=True) -> Tensor

torch.avg_pool1d(self : Tensor,
                 kernel_size : List[int],
                 stride : List[int]=[],
                 padding : List[int]=[0],
                 ceil_mode : bool=False,
                 count_include_pad : bool=True,
                 out : Tensor) -> Tensor

torch.baddbmm(self : Tensor,
              batch1 : Tensor,
              batch2 : Tensor,
              beta : number=1,
              alpha : number=1) -> Tensor

torch.baddbmm(self : Tensor,
              batch1 : Tensor,
              batch2 : Tensor,
              beta : number=1,
              alpha : number=1,
              out : Tensor) -> Tensor

torch.bartlett_window(window_length : int,
                      dtype : Optional[int],
                      layout : Optional[int],
                      device : Optional[Device],
                      pin_memory : Optional[bool]) -> Tensor

torch.bartlett_window(window_length : int,
                      periodic : bool,
                      dtype : Optional[int],
                      layout : Optional[int],
                      device : Optional[Device],
                      pin_memory : Optional[bool]) -> Tensor

torch.bartlett_window(window_length : int,
                      out : Tensor) -> Tensor

torch.bartlett_window(window_length : int,
                      periodic : bool,
                      out : Tensor) -> Tensor

torch.batch_norm(input : Tensor,
                 weight : Optional[Tensor],
                 bias : Optional[Tensor],
                 running_mean : Optional[Tensor],
                 running_var : Optional[Tensor],
                 training : bool,
                 momentum : float,
                 eps : float,
                 cudnn_enabled : bool) -> Tensor

torch.batch_norm_backward_elemt(grad_out : Tensor,
                                input : Tensor,
                                mean : Tensor,
                                invstd : Tensor,
                                weight : Optional[Tensor],
                                sum_dy : Tensor,
                                sum_dy_xmu : Tensor,
                                count : Tensor,
                                out : Tensor) -> Tensor

torch.batch_norm_backward_elemt(grad_out : Tensor,
                                input : Tensor,
                                mean : Tensor,
                                invstd : Tensor,
                                weight : Optional[Tensor],
                                sum_dy : Tensor,
                                sum_dy_xmu : Tensor,
                                count : Tensor) -> Tensor

torch.batch_norm_backward_reduce(grad_out : Tensor,
                                 input : Tensor,
                                 mean : Tensor,
                                 invstd : Tensor,
                                 weight : Optional[Tensor],
                                 input_g : bool,
                                 weight_g : bool,
                                 bias_g : bool,
                                 out0 : Tensor,
                                 out1 : Tensor,
                                 out2 : Tensor,
                                 out3 : Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]

torch.batch_norm_backward_reduce(grad_out : Tensor,
                                 input : Tensor,
                                 mean : Tensor,
                                 invstd : Tensor,
                                 weight : Optional[Tensor],
                                 input_g : bool,
                                 weight_g : bool,
                                 bias_g : bool) -> Tuple[Tensor, Tensor, Tensor, Tensor]

torch.batch_norm_elemt(input : Tensor,
                       weight : Optional[Tensor],
                       bias : Optional[Tensor],
                       mean : Tensor,
                       invstd : Tensor,
                       eps : float,
                       out : Tensor) -> Tensor

torch.batch_norm_elemt(input : Tensor,
                       weight : Optional[Tensor],
                       bias : Optional[Tensor],
                       mean : Tensor,
                       invstd : Tensor,
                       eps : float) -> Tensor

torch.batch_norm_gather_stats(input : Tensor,
                              mean : Tensor,
                              invstd : Tensor,
                              running_mean : Optional[Tensor],
                              running_var : Optional[Tensor],
                              momentum : float,
                              eps : float,
                              count : int,
                              out0 : Tensor,
                              out1 : Tensor) -> Tuple[Tensor, Tensor]

torch.batch_norm_gather_stats(input : Tensor,
                              mean : Tensor,
                              invstd : Tensor,
                              running_mean : Optional[Tensor],
                              running_var : Optional[Tensor],
                              momentum : float,
                              eps : float,
                              count : int) -> Tuple[Tensor, Tensor]

torch.batch_norm_gather_stats_with_counts(input : Tensor,
                                          mean : Tensor,
                                          invstd : Tensor,
                                          running_mean : Optional[Tensor],
                                          running_var : Optional[Tensor],
                                          momentum : float,
                                          eps : float,
                                          counts : Tensor,
                                          out0 : Tensor,
                                          out1 : Tensor) -> Tuple[Tensor, Tensor]

torch.batch_norm_gather_stats_with_counts(input : Tensor,
                                          mean : Tensor,
                                          invstd : Tensor,
                                          running_mean : Optional[Tensor],
                                          running_var : Optional[Tensor],
                                          momentum : float,
                                          eps : float,
                                          counts : Tensor) -> Tuple[Tensor, Tensor]

torch.batch_norm_stats(input : Tensor,
                       eps : float,
                       out0 : Tensor,
                       out1 : Tensor) -> Tuple[Tensor, Tensor]

torch.batch_norm_stats(input : Tensor,
                       eps : float) -> Tuple[Tensor, Tensor]

torch.batch_norm_update_stats(input : Tensor,
                              running_mean : Optional[Tensor],
                              running_var : Optional[Tensor],
                              momentum : float) -> Tuple[Tensor, Tensor]

torch.batch_norm_update_stats(input : Tensor,
                              running_mean : Optional[Tensor],
                              running_var : Optional[Tensor],
                              momentum : float,
                              out0 : Tensor,
                              out1 : Tensor) -> Tuple[Tensor, Tensor]

torch.bernoulli(self : Tensor,
                generator : Optional[Generator]) -> Tensor

torch.bernoulli(self : Tensor,
                generator : Optional[Generator],
                out : Tensor) -> Tensor

torch.bernoulli(self : Tensor,
                p : float,
                generator : Optional[Generator]) -> Tensor

torch.bernoulli(self : Tensor,
                p : Tensor,
                generator : Optional[Generator]) -> Tensor

torch.bernoulli(self : Tensor,
                p : Tensor,
                generator : Optional[Generator],
                out : Tensor) -> Tensor

torch.bernoulli(self : Tensor,
                p : float=0.5,
                generator : Optional[Generator],
                out : Tensor) -> Tensor

torch.bilinear(input1 : Tensor,
               input2 : Tensor,
               weight : Tensor,
               bias : Optional[Tensor]) -> Tensor

torch.binary_cross_entropy_with_logits(self : Tensor,
                                       target : Tensor,
                                       weight : Optional[Tensor],
                                       pos_weight : Optional[Tensor],
                                       reduction : int=1) -> Tensor

torch.binary_cross_entropy_with_logits(self : Tensor,
                                       target : Tensor,
                                       weight : Optional[Tensor],
                                       pos_weight : Optional[Tensor],
                                       reduction : int=1,
                                       out : Tensor) -> Tensor

torch.bincount(self : Tensor,
               weights : Optional[Tensor],
               minlength : int=0) -> Tensor

torch.bincount(self : Tensor,
               weights : Optional[Tensor],
               minlength : int=0,
               out : Tensor) -> Tensor

torch.binomial(count : Tensor,
               prob : Tensor,
               generator : Optional[Generator]) -> Tensor

torch.binomial(count : Tensor,
               prob : Tensor,
               generator : Optional[Generator],
               out : Tensor) -> Tensor

torch.bitwise_and(self : Tensor,
                  other : Tensor) -> Tensor

torch.bitwise_and(self : Tensor,
                  other : number) -> Tensor

torch.bitwise_and(self : number,
                  other : Tensor) -> Tensor

torch.bitwise_and(self : Tensor,
                  other : Tensor,
                  out : Tensor) -> Tensor

torch.bitwise_and(self : Tensor,
                  other : number,
                  out : Tensor) -> Tensor

torch.bitwise_and(self : number,
                  other : Tensor,
                  out : Tensor) -> Tensor

torch.bitwise_left_shift(self : Tensor,
                         other : Tensor) -> Tensor

torch.bitwise_left_shift(self : Tensor,
                         other : number) -> Tensor

torch.bitwise_left_shift(self : number,
                         other : Tensor) -> Tensor

torch.bitwise_left_shift(self : Tensor,
                         other : Tensor,
                         out : Tensor) -> Tensor

torch.bitwise_left_shift(self : Tensor,
                         other : number,
                         out : Tensor) -> Tensor

torch.bitwise_left_shift(self : number,
                         other : Tensor,
                         out : Tensor) -> Tensor

torch.bitwise_not(self : Tensor) -> Tensor

torch.bitwise_not(self : Tensor,
                  out : Tensor) -> Tensor

torch.bitwise_or(self : Tensor,
                 other : Tensor) -> Tensor

torch.bitwise_or(self : Tensor,
                 other : number) -> Tensor

torch.bitwise_or(self : number,
                 other : Tensor) -> Tensor

torch.bitwise_or(self : Tensor,
                 other : Tensor,
                 out : Tensor) -> Tensor

torch.bitwise_or(self : Tensor,
                 other : number,
                 out : Tensor) -> Tensor

torch.bitwise_or(self : number,
                 other : Tensor,
                 out : Tensor) -> Tensor

torch.bitwise_right_shift(self : Tensor,
                          other : Tensor) -> Tensor

torch.bitwise_right_shift(self : Tensor,
                          other : number) -> Tensor

torch.bitwise_right_shift(self : number,
                          other : Tensor) -> Tensor

torch.bitwise_right_shift(self : Tensor,
                          other : Tensor,
                          out : Tensor) -> Tensor

torch.bitwise_right_shift(self : Tensor,
                          other : number,
                          out : Tensor) -> Tensor

torch.bitwise_right_shift(self : number,
                          other : Tensor,
                          out : Tensor) -> Tensor

torch.bitwise_xor(self : Tensor,
                  other : Tensor) -> Tensor

torch.bitwise_xor(self : Tensor,
                  other : number) -> Tensor

torch.bitwise_xor(self : number,
                  other : Tensor) -> Tensor

torch.bitwise_xor(self : Tensor,
                  other : Tensor,
                  out : Tensor) -> Tensor

torch.bitwise_xor(self : Tensor,
                  other : number,
                  out : Tensor) -> Tensor

torch.bitwise_xor(self : number,
                  other : Tensor,
                  out : Tensor) -> Tensor

torch.blackman_window(window_length : int,
                      dtype : Optional[int],
                      layout : Optional[int],
                      device : Optional[Device],
                      pin_memory : Optional[bool]) -> Tensor

torch.blackman_window(window_length : int,
                      periodic : bool,
                      dtype : Optional[int],
                      layout : Optional[int],
                      device : Optional[Device],
                      pin_memory : Optional[bool]) -> Tensor

torch.blackman_window(window_length : int,
                      out : Tensor) -> Tensor

torch.blackman_window(window_length : int,
                      periodic : bool,
                      out : Tensor) -> Tensor

torch.block_diag(tensors : List[Tensor]) -> Tensor

torch.block_diag(tensors : List[Tensor],
                 out : Tensor) -> Tensor

torch.bmm(self : Tensor,
          mat2 : Tensor) -> Tensor

torch.bmm(self : Tensor,
          mat2 : Tensor,
          out : Tensor) -> Tensor

torch.broadcast_tensors(tensors : List[Tensor]) -> List[Tensor]

torch.broadcast_to(self : Tensor,
                   size : List[int]) -> Tensor

torch.bucketize(self : Tensor,
                boundaries : Tensor,
                out_int32 : bool=False,
                right : bool=False) -> Tensor

torch.bucketize(self : number,
                boundaries : Tensor,
                out_int32 : bool=False,
                right : bool=False) -> Tensor

torch.bucketize(self : Tensor,
                boundaries : Tensor,
                out_int32 : bool=False,
                right : bool=False,
                out : Tensor) -> Tensor

torch.bucketize(self : number,
                boundaries : Tensor,
                out_int32 : bool=False,
                right : bool=False,
                out : Tensor) -> Tensor

torch.can_cast(from_ : int,
               to : int) -> bool

torch.cartesian_prod(tensors : List[Tensor]) -> Tensor

torch.cat(tensors : List[Tensor],
          dim : int=0) -> Tensor

torch.cat(tensors : List[Tensor],
          dim : str) -> Tensor

torch.cat(tensors : List[Tensor],
          dim : str,
          out : Tensor) -> Tensor

torch.cat(tensors : List[Tensor],
          dim : int=0,
          out : Tensor) -> Tensor

torch.ccol_indices_copy(self : Tensor) -> Tensor

torch.ccol_indices_copy(self : Tensor,
                        out : Tensor) -> Tensor

torch.ceil(self : Tensor) -> Tensor

torch.ceil(self : Tensor,
           out : Tensor) -> Tensor

torch.ceil(a : int) -> int

torch.ceil(a : float) -> int

torch.ceil(a : number) -> number

torch.ceil_(self : Tensor) -> Tensor

torch.celu(self : Tensor,
           alpha : number=1.0) -> Tensor

torch.celu(self : Tensor,
           alpha : number=1.0,
           out : Tensor) -> Tensor

torch.celu_(self : Tensor,
            alpha : number=1.0) -> Tensor

torch.chain_matmul(matrices : List[Tensor]) -> Tensor

torch.chain_matmul(matrices : List[Tensor],
                   out : Tensor) -> Tensor

torch.channel_shuffle(self : Tensor,
                      groups : int) -> Tensor

torch.channel_shuffle(self : Tensor,
                      groups : int,
                      out : Tensor) -> Tensor

torch.cholesky(self : Tensor,
               upper : bool=False) -> Tensor

torch.cholesky(self : Tensor,
               upper : bool=False,
               out : Tensor) -> Tensor

torch.cholesky_inverse(self : Tensor,
                       upper : bool=False) -> Tensor

torch.cholesky_inverse(self : Tensor,
                       upper : bool=False,
                       out : Tensor) -> Tensor

torch.cholesky_solve(self : Tensor,
                     input2 : Tensor,
                     upper : bool=False) -> Tensor

torch.cholesky_solve(self : Tensor,
                     input2 : Tensor,
                     upper : bool=False,
                     out : Tensor) -> Tensor

torch.choose_qparams_optimized(input : Tensor,
                               numel : int,
                               n_bins : int,
                               ratio : float,
                               bit_width : int) -> Tuple[Tensor, Tensor]

torch.chunk(self : Tensor,
            chunks : int,
            dim : int=0) -> List[Tensor]

torch.clamp(self : Tensor,
            min : Optional[number],
            max : Optional[number]) -> Tensor

torch.clamp(self : Tensor,
            min : Optional[Tensor],
            max : Optional[Tensor]) -> Tensor

torch.clamp(self : Tensor,
            min : Optional[number],
            max : Optional[number],
            out : Tensor) -> Tensor

torch.clamp(self : Tensor,
            min : Optional[Tensor],
            max : Optional[Tensor],
            out : Tensor) -> Tensor

torch.clamp_(self : Tensor,
             min : Optional[number],
             max : Optional[number]) -> Tensor

torch.clamp_(self : Tensor,
             min : Optional[Tensor],
             max : Optional[Tensor]) -> Tensor

torch.clamp_max(self : Tensor,
                max : number) -> Tensor

torch.clamp_max(self : Tensor,
                max : Tensor) -> Tensor

torch.clamp_max(self : Tensor,
                max : number,
                out : Tensor) -> Tensor

torch.clamp_max(self : Tensor,
                max : Tensor,
                out : Tensor) -> Tensor

torch.clamp_max_(self : Tensor,
                 max : number) -> Tensor

torch.clamp_max_(self : Tensor,
                 max : Tensor) -> Tensor

torch.clamp_min(self : Tensor,
                min : number) -> Tensor

torch.clamp_min(self : Tensor,
                min : Tensor) -> Tensor

torch.clamp_min(self : Tensor,
                min : number,
                out : Tensor) -> Tensor

torch.clamp_min(self : Tensor,
                min : Tensor,
                out : Tensor) -> Tensor

torch.clamp_min_(self : Tensor,
                 min : number) -> Tensor

torch.clamp_min_(self : Tensor,
                 min : Tensor) -> Tensor

torch.clip(self : Tensor,
           min : Optional[number],
           max : Optional[number]) -> Tensor

torch.clip(self : Tensor,
           min : Optional[Tensor],
           max : Optional[Tensor]) -> Tensor

torch.clip(self : Tensor,
           min : Optional[number],
           max : Optional[number],
           out : Tensor) -> Tensor

torch.clip(self : Tensor,
           min : Optional[Tensor],
           max : Optional[Tensor],
           out : Tensor) -> Tensor

torch.clip_(self : Tensor,
            min : Optional[number],
            max : Optional[number]) -> Tensor

torch.clip_(self : Tensor,
            min : Optional[Tensor],
            max : Optional[Tensor]) -> Tensor

torch.clone(self : Tensor,
            memory_format : Optional[int]) -> Tensor

torch.clone(self : Tensor,
            memory_format : Optional[int],
            out : Tensor) -> Tensor

torch.col_indices_copy(self : Tensor) -> Tensor

torch.col_indices_copy(self : Tensor,
                       out : Tensor) -> Tensor

torch.column_stack(tensors : List[Tensor]) -> Tensor

torch.column_stack(tensors : List[Tensor],
                   out : Tensor) -> Tensor

torch.combinations(self : Tensor,
                   r : int=2,
                   with_replacement : bool=False) -> Tensor

torch.complex(real : Tensor,
              imag : Tensor) -> Tensor

torch.complex(real : Tensor,
              imag : Tensor,
              out : Tensor) -> Tensor

torch.concat(tensors : List[Tensor],
             dim : int=0) -> Tensor

torch.concat(tensors : List[Tensor],
             dim : int=0,
             out : Tensor) -> Tensor

torch.concat(tensors : List[Tensor],
             dim : str) -> Tensor

torch.concat(tensors : List[Tensor],
             dim : str,
             out : Tensor) -> Tensor

torch.concatenate(tensors : List[Tensor],
                  dim : int=0) -> Tensor

torch.concatenate(tensors : List[Tensor],
                  dim : int=0,
                  out : Tensor) -> Tensor

torch.concatenate(tensors : List[Tensor],
                  dim : str) -> Tensor

torch.concatenate(tensors : List[Tensor],
                  dim : str,
                  out : Tensor) -> Tensor

torch.conj(self : Tensor) -> Tensor

torch.conj_physical(self : Tensor) -> Tensor

torch.conj_physical(self : Tensor,
                    out : Tensor) -> Tensor

torch.conj_physical_(self : Tensor) -> Tensor

torch.constant_pad_nd(self : Tensor,
                      pad : List[int],
                      value : number=0) -> Tensor

torch.constant_pad_nd(self : Tensor,
                      pad : List[int],
                      value : number=0,
                      out : Tensor) -> Tensor

torch.conv1d(input : Tensor,
             weight : Tensor,
             bias : Optional[Tensor],
             stride : List[int]=[1],
             padding : List[int]=[0],
             dilation : List[int]=[1],
             groups : int=1) -> Tensor

torch.conv1d(input : Tensor,
             weight : Tensor,
             bias : Optional[Tensor],
             stride : List[int]=[1],
             padding : str=valid,
             dilation : List[int]=[1],
             groups : int=1) -> Tensor

torch.conv2d(input : Tensor,
             weight : Tensor,
             bias : Optional[Tensor],
             stride : List[int]=[1, 1],
             padding : List[int]=[0, 0],
             dilation : List[int]=[1, 1],
             groups : int=1) -> Tensor

torch.conv2d(input : Tensor,
             weight : Tensor,
             bias : Optional[Tensor],
             stride : List[int]=[1, 1],
             padding : str=valid,
             dilation : List[int]=[1, 1],
             groups : int=1) -> Tensor

torch.conv3d(input : Tensor,
             weight : Tensor,
             bias : Optional[Tensor],
             stride : List[int]=[1, 1, 1],
             padding : List[int]=[0, 0, 0],
             dilation : List[int]=[1, 1, 1],
             groups : int=1) -> Tensor

torch.conv3d(input : Tensor,
             weight : Tensor,
             bias : Optional[Tensor],
             stride : List[int]=[1, 1, 1],
             padding : str=valid,
             dilation : List[int]=[1, 1, 1],
             groups : int=1) -> Tensor

torch.conv_tbc(self : Tensor,
               weight : Tensor,
               bias : Tensor,
               pad : int=0) -> Tensor

torch.conv_tbc(self : Tensor,
               weight : Tensor,
               bias : Tensor,
               pad : int=0,
               out : Tensor) -> Tensor

torch.conv_transpose1d(input : Tensor,
                       weight : Tensor,
                       bias : Optional[Tensor],
                       stride : List[int]=[1],
                       padding : List[int]=[0],
                       output_padding : List[int]=[0],
                       groups : int=1,
                       dilation : List[int]=[1]) -> Tensor

torch.conv_transpose2d(input : Tensor,
                       weight : Tensor,
                       bias : Optional[Tensor],
                       stride : List[int]=[1, 1],
                       padding : List[int]=[0, 0],
                       output_padding : List[int]=[0, 0],
                       groups : int=1,
                       dilation : List[int]=[1, 1]) -> Tensor

torch.conv_transpose3d(input : Tensor,
                       weight : Tensor,
                       bias : Optional[Tensor],
                       stride : List[int]=[1, 1, 1],
                       padding : List[int]=[0, 0, 0],
                       output_padding : List[int]=[0, 0, 0],
                       groups : int=1,
                       dilation : List[int]=[1, 1, 1]) -> Tensor

torch.convolution(input : Tensor,
                  weight : Tensor,
                  bias : Optional[Tensor],
                  stride : List[int],
                  padding : List[int],
                  dilation : List[int],
                  transposed : bool,
                  output_padding : List[int],
                  groups : int) -> Tensor

torch.convolution(input : Tensor,
                  weight : Tensor,
                  bias : Optional[Tensor],
                  stride : List[int],
                  padding : List[int],
                  dilation : List[int],
                  transposed : bool,
                  output_padding : List[int],
                  groups : int,
                  out : Tensor) -> Tensor

torch.copysign(self : Tensor,
               other : Tensor) -> Tensor

torch.copysign(self : Tensor,
               other : number) -> Tensor

torch.copysign(self : Tensor,
               other : Tensor,
               out : Tensor) -> Tensor

torch.copysign(self : Tensor,
               other : number,
               out : Tensor) -> Tensor

torch.copysign(a : int,
               b : int) -> float

torch.copysign(a : float,
               b : float) -> float

torch.copysign(a : int,
               b : float) -> float

torch.copysign(a : float,
               b : int) -> float

torch.copysign(a : number,
               b : number) -> float

torch.corrcoef(self : Tensor) -> Tensor

torch.cos(self : Tensor) -> Tensor

torch.cos(self : Tensor,
          out : Tensor) -> Tensor

torch.cos(a : int) -> float

torch.cos(a : float) -> float

torch.cos(a : complex) -> complex

torch.cos(a : number) -> number

torch.cos_(self : Tensor) -> Tensor

torch.cosh(self : Tensor) -> Tensor

torch.cosh(self : Tensor,
           out : Tensor) -> Tensor

torch.cosh(a : int) -> float

torch.cosh(a : float) -> float

torch.cosh(a : complex) -> complex

torch.cosh(a : number) -> number

torch.cosh_(self : Tensor) -> Tensor

torch.cosine_embedding_loss(input1 : Tensor,
                            input2 : Tensor,
                            target : Tensor,
                            margin : float=0.0,
                            reduction : int=1) -> Tensor

torch.cosine_similarity(x1 : Tensor,
                        x2 : Tensor,
                        dim : int=1,
                        eps : float=1e-08) -> Tensor

torch.count_nonzero(self : Tensor,
                    dim : List[int]) -> Tensor

torch.count_nonzero(self : Tensor,
                    dim : List[int],
                    out : Tensor) -> Tensor

torch.count_nonzero(self : Tensor,
                    dim : Optional[int]) -> Tensor

torch.count_nonzero(self : Tensor,
                    dim : Optional[int],
                    out : Tensor) -> Tensor

torch.cov(self : Tensor,
          correction : int=1,
          fweights : Optional[Tensor],
          aweights : Optional[Tensor]) -> Tensor

torch.cross(self : Tensor,
            other : Tensor,
            dim : Optional[int]) -> Tensor

torch.cross(self : Tensor,
            other : Tensor,
            dim : Optional[int],
            out : Tensor) -> Tensor

torch.crow_indices_copy(self : Tensor) -> Tensor

torch.crow_indices_copy(self : Tensor,
                        out : Tensor) -> Tensor

torch.ctc_loss(log_probs : Tensor,
               targets : Tensor,
               input_lengths : List[int],
               target_lengths : List[int],
               blank : int=0,
               reduction : int=1,
               zero_infinity : bool=False) -> Tensor

torch.ctc_loss(log_probs : Tensor,
               targets : Tensor,
               input_lengths : Tensor,
               target_lengths : Tensor,
               blank : int=0,
               reduction : int=1,
               zero_infinity : bool=False) -> Tensor

torch.cudnn_affine_grid_generator(theta : Tensor,
                                  N : int,
                                  C : int,
                                  H : int,
                                  W : int,
                                  out : Tensor) -> Tensor

torch.cudnn_affine_grid_generator(theta : Tensor,
                                  N : int,
                                  C : int,
                                  H : int,
                                  W : int) -> Tensor

torch.cudnn_batch_norm(input : Tensor,
                       weight : Tensor,
                       bias : Optional[Tensor],
                       running_mean : Optional[Tensor],
                       running_var : Optional[Tensor],
                       training : bool,
                       exponential_average_factor : float,
                       epsilon : float) -> Tuple[Tensor, Tensor, Tensor, Tensor]

torch.cudnn_batch_norm(input : Tensor,
                       weight : Tensor,
                       bias : Optional[Tensor],
                       running_mean : Optional[Tensor],
                       running_var : Optional[Tensor],
                       training : bool,
                       exponential_average_factor : float,
                       epsilon : float,
                       out0 : Tensor,
                       out1 : Tensor,
                       out2 : Tensor,
                       out3 : Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]

torch.cudnn_convolution(self : Tensor,
                        weight : Tensor,
                        padding : List[int],
                        stride : List[int],
                        dilation : List[int],
                        groups : int,
                        benchmark : bool,
                        deterministic : bool,
                        allow_tf32 : bool) -> Tensor

torch.cudnn_convolution(self : Tensor,
                        weight : Tensor,
                        padding : List[int],
                        stride : List[int],
                        dilation : List[int],
                        groups : int,
                        benchmark : bool,
                        deterministic : bool,
                        allow_tf32 : bool,
                        out : Tensor) -> Tensor

torch.cudnn_convolution_add_relu(self : Tensor,
                                 weight : Tensor,
                                 z : Tensor,
                                 alpha : Optional[number],
                                 bias : Optional[Tensor],
                                 stride : List[int],
                                 padding : List[int],
                                 dilation : List[int],
                                 groups : int,
                                 out : Tensor) -> Tensor

torch.cudnn_convolution_add_relu(self : Tensor,
                                 weight : Tensor,
                                 z : Tensor,
                                 alpha : Optional[number],
                                 bias : Optional[Tensor],
                                 stride : List[int],
                                 padding : List[int],
                                 dilation : List[int],
                                 groups : int) -> Tensor

torch.cudnn_convolution_relu(self : Tensor,
                             weight : Tensor,
                             bias : Optional[Tensor],
                             stride : List[int],
                             padding : List[int],
                             dilation : List[int],
                             groups : int,
                             out : Tensor) -> Tensor

torch.cudnn_convolution_relu(self : Tensor,
                             weight : Tensor,
                             bias : Optional[Tensor],
                             stride : List[int],
                             padding : List[int],
                             dilation : List[int],
                             groups : int) -> Tensor

torch.cudnn_convolution_transpose(self : Tensor,
                                  weight : Tensor,
                                  padding : List[int],
                                  output_padding : List[int],
                                  stride : List[int],
                                  dilation : List[int],
                                  groups : int,
                                  benchmark : bool,
                                  deterministic : bool,
                                  allow_tf32 : bool) -> Tensor

torch.cudnn_convolution_transpose(self : Tensor,
                                  weight : Tensor,
                                  padding : List[int],
                                  output_padding : List[int],
                                  stride : List[int],
                                  dilation : List[int],
                                  groups : int,
                                  benchmark : bool,
                                  deterministic : bool,
                                  allow_tf32 : bool,
                                  out : Tensor) -> Tensor

torch.cudnn_grid_sampler(self : Tensor,
                         grid : Tensor) -> Tensor

torch.cudnn_grid_sampler(self : Tensor,
                         grid : Tensor,
                         out : Tensor) -> Tensor

torch.cudnn_is_acceptable(self : Tensor) -> bool

torch.cummax(self : Tensor,
             dim : int) -> Tuple[Tensor, Tensor]

torch.cummax(self : Tensor,
             dim : str) -> Tuple[Tensor, Tensor]

torch.cummax(self : Tensor,
             dim : str,
             values : Tensor,
             indices : Tensor) -> Tuple[Tensor, Tensor]

torch.cummax(self : Tensor,
             dim : int,
             values : Tensor,
             indices : Tensor) -> Tuple[Tensor, Tensor]

torch.cummin(self : Tensor,
             dim : int) -> Tuple[Tensor, Tensor]

torch.cummin(self : Tensor,
             dim : str) -> Tuple[Tensor, Tensor]

torch.cummin(self : Tensor,
             dim : str,
             values : Tensor,
             indices : Tensor) -> Tuple[Tensor, Tensor]

torch.cummin(self : Tensor,
             dim : int,
             values : Tensor,
             indices : Tensor) -> Tuple[Tensor, Tensor]

torch.cumprod(self : Tensor,
              dim : int,
              dtype : Optional[int]) -> Tensor

torch.cumprod(self : Tensor,
              dim : str,
              dtype : Optional[int]) -> Tensor

torch.cumprod(self : Tensor,
              dim : str,
              dtype : Optional[int],
              out : Tensor) -> Tensor

torch.cumprod(self : Tensor,
              dim : int,
              dtype : Optional[int],
              out : Tensor) -> Tensor

torch.cumsum(self : Tensor,
             dim : int,
             dtype : Optional[int]) -> Tensor

torch.cumsum(self : Tensor,
             dim : str,
             dtype : Optional[int]) -> Tensor

torch.cumsum(self : Tensor,
             dim : str,
             dtype : Optional[int],
             out : Tensor) -> Tensor

torch.cumsum(self : Tensor,
             dim : int,
             dtype : Optional[int],
             out : Tensor) -> Tensor

torch.cumulative_trapezoid(y : Tensor,
                           x : Tensor,
                           dim : int=-1) -> Tensor

torch.cumulative_trapezoid(y : Tensor,
                           dx : number=1,
                           dim : int=-1) -> Tensor

torch.deg2rad(self : Tensor) -> Tensor

torch.deg2rad(self : Tensor,
              out : Tensor) -> Tensor

torch.deg2rad_(self : Tensor) -> Tensor

torch.dequantize(self : Tensor) -> Tensor

torch.dequantize(self : Tensor,
                 out : Tensor) -> Tensor

torch.dequantize(tensors : List[Tensor],
                 out : List[Tensor]) -> Tuple[]

torch.dequantize(tensors : List[Tensor]) -> List[Tensor]

torch.dequantize(qtensor : Tensor) -> Tensor

torch.dequantize(qtensors : List[Tensor]) -> List[Tensor]

torch.dequantize(tensors : Any) -> Any

torch.det(self : Tensor) -> Tensor

torch.detach(self : Tensor) -> Tensor

torch.detach_(self : Tensor) -> Tensor

torch.detach_copy(self : Tensor) -> Tensor

torch.detach_copy(self : Tensor,
                  out : Tensor) -> Tensor

torch.device(a : str) -> Device

torch.device(type : str,
             index : int) -> Device

torch.diag(self : Tensor,
           diagonal : int=0) -> Tensor

torch.diag(self : Tensor,
           diagonal : int=0,
           out : Tensor) -> Tensor

torch.diag_embed(self : Tensor,
                 offset : int=0,
                 dim1 : int=-2,
                 dim2 : int=-1) -> Tensor

torch.diag_embed(self : Tensor,
                 offset : int=0,
                 dim1 : int=-2,
                 dim2 : int=-1,
                 out : Tensor) -> Tensor

torch.diagflat(self : Tensor,
               offset : int=0) -> Tensor

torch.diagonal(self : Tensor,
               offset : int=0,
               dim1 : int=0,
               dim2 : int=1) -> Tensor

torch.diagonal(self : Tensor,
               outdim : str,
               dim1 : str,
               dim2 : str,
               offset : int=0) -> Tensor

torch.diagonal_copy(self : Tensor,
                    offset : int=0,
                    dim1 : int=0,
                    dim2 : int=1) -> Tensor

torch.diagonal_copy(self : Tensor,
                    offset : int=0,
                    dim1 : int=0,
                    dim2 : int=1,
                    out : Tensor) -> Tensor

torch.diagonal_scatter(self : Tensor,
                       src : Tensor,
                       offset : int=0,
                       dim1 : int=0,
                       dim2 : int=1) -> Tensor

torch.diagonal_scatter(self : Tensor,
                       src : Tensor,
                       offset : int=0,
                       dim1 : int=0,
                       dim2 : int=1,
                       out : Tensor) -> Tensor

torch.diff(self : Tensor,
           n : int=1,
           dim : int=-1,
           prepend : Optional[Tensor],
           append : Optional[Tensor]) -> Tensor

torch.diff(self : Tensor,
           n : int=1,
           dim : int=-1,
           prepend : Optional[Tensor],
           append : Optional[Tensor],
           out : Tensor) -> Tensor

torch.digamma(self : Tensor) -> Tensor

torch.digamma(self : Tensor,
              out : Tensor) -> Tensor

torch.dist(self : Tensor,
           other : Tensor,
           p : number=2) -> Tensor

torch.dist(self : Tensor,
           other : Tensor,
           p : number=2,
           out : Tensor) -> Tensor

torch.div(self : Tensor,
          other : Tensor) -> Tensor

torch.div(self : Tensor,
          other : number) -> Tensor

torch.div(self : Tensor,
          other : Tensor,
          rounding_mode : Optional[str]) -> Tensor

torch.div(self : Tensor,
          other : number,
          rounding_mode : Optional[str]) -> Tensor

torch.div(self : Tensor,
          other : Tensor,
          out : Tensor) -> Tensor

torch.div(self : Tensor,
          other : Tensor,
          rounding_mode : Optional[str],
          out : Tensor) -> Tensor

torch.div(self : Tensor,
          other : number,
          out : Tensor) -> Tensor

torch.div(self : Tensor,
          other : number,
          rounding_mode : Optional[str],
          out : Tensor) -> Tensor

torch.div(a : int,
          b : int) -> float

torch.div(a : complex,
          b : complex) -> complex

torch.div(a : float,
          b : float) -> float

torch.div(a : number,
          b : number) -> float

torch.divide(self : Tensor,
             other : Tensor) -> Tensor

torch.divide(self : Tensor,
             other : number) -> Tensor

torch.divide(self : Tensor,
             other : Tensor,
             rounding_mode : Optional[str]) -> Tensor

torch.divide(self : Tensor,
             other : number,
             rounding_mode : Optional[str]) -> Tensor

torch.divide(self : Tensor,
             other : Tensor,
             out : Tensor) -> Tensor

torch.divide(self : Tensor,
             other : Tensor,
             rounding_mode : Optional[str],
             out : Tensor) -> Tensor

torch.dot(self : Tensor,
          tensor : Tensor) -> Tensor

torch.dot(self : Tensor,
          tensor : Tensor,
          out : Tensor) -> Tensor

torch.dropout(input : Tensor,
              p : float,
              train : bool) -> Tensor

torch.dropout_(self : Tensor,
               p : float,
               train : bool) -> Tensor

torch.dsplit(self : Tensor,
             sections : int) -> List[Tensor]

torch.dsplit(self : Tensor,
             indices : List[int]) -> List[Tensor]

torch.dstack(tensors : List[Tensor]) -> Tensor

torch.dstack(tensors : List[Tensor],
             out : Tensor) -> Tensor

torch.einsum(equation : str,
             tensors : List[Tensor],
             path : Optional[List[int]]) -> Tensor

torch.einsum(a : Tensor) -> Tensor

torch.embedding(weight : Tensor,
                indices : Tensor,
                padding_idx : int=-1,
                scale_grad_by_freq : bool=False,
                sparse : bool=False) -> Tensor

torch.embedding(weight : Tensor,
                indices : Tensor,
                padding_idx : int=-1,
                scale_grad_by_freq : bool=False,
                sparse : bool=False,
                out : Tensor) -> Tensor

torch.embedding_bag(weight : Tensor,
                    indices : Tensor,
                    offsets : Tensor,
                    scale_grad_by_freq : bool=False,
                    mode : int=0,
                    sparse : bool=False,
                    per_sample_weights : Optional[Tensor],
                    include_last_offset : bool=False) -> Tuple[Tensor, Tensor, Tensor, Tensor]

torch.embedding_bag(weight : Tensor,
                    indices : Tensor,
                    offsets : Tensor,
                    scale_grad_by_freq : bool,
                    mode : int,
                    sparse : bool,
                    per_sample_weights : Optional[Tensor],
                    include_last_offset : bool,
                    padding_idx : Optional[int]) -> Tuple[Tensor, Tensor, Tensor, Tensor]

torch.embedding_renorm_(self : Tensor,
                        indices : Tensor,
                        max_norm : float,
                        norm_type : float) -> Tensor

torch.empty(size : List[int],
            dtype : Optional[int],
            layout : Optional[int],
            device : Optional[Device],
            pin_memory : Optional[bool],
            memory_format : Optional[int]) -> Tensor

torch.empty(size : List[int],
            memory_format : Optional[int],
            out : Tensor) -> Tensor

torch.empty(size : List[int],
            names : Optional[List[str]],
            dtype : Optional[int],
            layout : Optional[int],
            device : Optional[Device],
            pin_memory : Optional[bool],
            memory_format : Optional[int]) -> Tensor

torch.empty(size : List[int],
            names : Optional[List[str]],
            memory_format : Optional[int],
            out : Tensor) -> Tensor

torch.empty_like(self : Tensor,
                 dtype : Optional[int],
                 layout : Optional[int],
                 device : Optional[Device],
                 pin_memory : Optional[bool],
                 memory_format : Optional[int]) -> Tensor

torch.empty_like(self : Tensor,
                 memory_format : Optional[int],
                 out : Tensor) -> Tensor

torch.empty_permuted(size : List[int],
                     physical_layout : List[int],
                     dtype : Optional[int],
                     layout : Optional[int],
                     device : Optional[Device],
                     pin_memory : Optional[bool]) -> Tensor

torch.empty_permuted(size : List[int],
                     physical_layout : List[int],
                     out : Tensor) -> Tensor

torch.empty_quantized(size : List[int],
                      qtensor : Tensor,
                      dtype : Optional[int],
                      layout : Optional[int],
                      device : Optional[Device],
                      pin_memory : Optional[bool],
                      memory_format : Optional[int]) -> Tensor

torch.empty_quantized(size : List[int],
                      qtensor : Tensor,
                      memory_format : Optional[int],
                      out : Tensor) -> Tensor

torch.empty_strided(size : List[int],
                    stride : List[int],
                    dtype : Optional[int],
                    layout : Optional[int],
                    device : Optional[Device],
                    pin_memory : Optional[bool]) -> Tensor

torch.empty_strided(size : List[int],
                    stride : List[int],
                    out : Tensor) -> Tensor

torch.eq(self : Tensor,
         other : Tensor) -> Tensor

torch.eq(self : Tensor,
         other : number) -> Tensor

torch.eq(self : Tensor,
         other : number,
         out : Tensor) -> Tensor

torch.eq(self : Tensor,
         other : Tensor,
         out : Tensor) -> Tensor

torch.eq(a : List[int],
         b : List[int]) -> bool

torch.eq(a : Device,
         b : Device) -> bool

torch.eq(a : bool,
         b : bool) -> bool

torch.eq(a : AnyEnumType,
         b : AnyEnumType) -> bool

torch.eq(a : int,
         b : int) -> bool

torch.eq(a : complex,
         b : complex) -> bool

torch.eq(a : float,
         b : float) -> bool

torch.eq(a : int,
         b : float) -> bool

torch.eq(a : float,
         b : int) -> bool

torch.eq(a : float,
         b : complex) -> bool

torch.eq(a : complex,
         b : float) -> bool

torch.eq(a : number,
         b : number) -> bool

torch.eq(a : str,
         b : str) -> bool

torch.eq(a : List[float],
         b : List[float]) -> bool

torch.eq(a : List[Tensor],
         b : List[Tensor]) -> bool

torch.eq(a : List[bool],
         b : List[bool]) -> bool

torch.eq(a : List[str],
         b : List[str]) -> bool

torch.equal(self : Tensor,
            other : Tensor) -> bool

torch.erf(self : Tensor) -> Tensor

torch.erf(self : Tensor,
          out : Tensor) -> Tensor

torch.erf(a : int) -> float

torch.erf(a : float) -> float

torch.erf(a : number) -> number

torch.erf_(self : Tensor) -> Tensor

torch.erfc(self : Tensor) -> Tensor

torch.erfc(self : Tensor,
           out : Tensor) -> Tensor

torch.erfc(a : int) -> float

torch.erfc(a : float) -> float

torch.erfc(a : number) -> number

torch.erfc_(self : Tensor) -> Tensor

torch.erfinv(self : Tensor) -> Tensor

torch.erfinv(self : Tensor,
             out : Tensor) -> Tensor

torch.exp(self : Tensor) -> Tensor

torch.exp(self : Tensor,
          out : Tensor) -> Tensor

torch.exp(a : int) -> float

torch.exp(a : float) -> float

torch.exp(a : complex) -> complex

torch.exp(a : number) -> number

torch.exp2(self : Tensor) -> Tensor

torch.exp2(self : Tensor,
           out : Tensor) -> Tensor

torch.exp2_(self : Tensor) -> Tensor

torch.exp_(self : Tensor) -> Tensor

torch.expand_copy(self : Tensor,
                  size : List[int],
                  implicit : bool=False) -> Tensor

torch.expand_copy(self : Tensor,
                  size : List[int],
                  implicit : bool=False,
                  out : Tensor) -> Tensor

torch.expm1(self : Tensor) -> Tensor

torch.expm1(self : Tensor,
            out : Tensor) -> Tensor

torch.expm1(a : int) -> float

torch.expm1(a : float) -> float

torch.expm1(a : number) -> number

torch.expm1_(self : Tensor) -> Tensor

torch.eye(n : int,
          dtype : Optional[int],
          layout : Optional[int],
          device : Optional[Device],
          pin_memory : Optional[bool]) -> Tensor

torch.eye(n : int,
          m : int,
          dtype : Optional[int],
          layout : Optional[int],
          device : Optional[Device],
          pin_memory : Optional[bool]) -> Tensor

torch.eye(n : int,
          out : Tensor) -> Tensor

torch.eye(n : int,
          m : int,
          out : Tensor) -> Tensor

torch.fake_quantize_per_channel_affine(self : Tensor,
                                       scale : Tensor,
                                       zero_point : Tensor,
                                       axis : int,
                                       quant_min : int,
                                       quant_max : int) -> Tensor

torch.fake_quantize_per_tensor_affine(self : Tensor,
                                      scale : float,
                                      zero_point : int,
                                      quant_min : int,
                                      quant_max : int) -> Tensor

torch.fake_quantize_per_tensor_affine(self : Tensor,
                                      scale : Tensor,
                                      zero_point : Tensor,
                                      quant_min : int,
                                      quant_max : int) -> Tensor

torch.fbgemm_linear_fp16_weight(input : Tensor,
                                packed_weight : Tensor,
                                bias : Tensor) -> Tensor

torch.fbgemm_linear_fp16_weight_fp32_activation(input : Tensor,
                                                packed_weight : Tensor,
                                                bias : Tensor) -> Tensor

torch.fbgemm_linear_int8_weight(input : Tensor,
                                weight : Tensor,
                                packed : Tensor,
                                col_offsets : Tensor,
                                weight_scale : number,
                                weight_zero_point : number,
                                bias : Tensor) -> Tensor

torch.fbgemm_linear_int8_weight_fp32_activation(input : Tensor,
                                                weight : Tensor,
                                                packed : Tensor,
                                                col_offsets : Tensor,
                                                weight_scale : number,
                                                weight_zero_point : number,
                                                bias : Tensor) -> Tensor

torch.fbgemm_linear_quantize_weight(input : Tensor) -> Tuple[Tensor, Tensor, float, int]

torch.fbgemm_pack_gemm_matrix_fp16(input : Tensor) -> Tensor

torch.fbgemm_pack_quantized_matrix(input : Tensor) -> Tensor

torch.fbgemm_pack_quantized_matrix(input : Tensor,
                                   K : int,
                                   N : int) -> Tensor

torch.feature_alpha_dropout(input : Tensor,
                            p : float,
                            train : bool) -> Tensor

torch.feature_alpha_dropout_(self : Tensor,
                             p : float,
                             train : bool) -> Tensor

torch.feature_dropout(input : Tensor,
                      p : float,
                      train : bool) -> Tensor

torch.feature_dropout_(self : Tensor,
                       p : float,
                       train : bool) -> Tensor

torch.fill(self : Tensor,
           value : number) -> Tensor

torch.fill(self : Tensor,
           value : number,
           out : Tensor) -> Tensor

torch.fill(self : Tensor,
           value : Tensor) -> Tensor

torch.fill(self : Tensor,
           value : Tensor,
           out : Tensor) -> Tensor

torch.fill_(self : Tensor,
            value : number) -> Tensor

torch.fill_(self : Tensor,
            value : Tensor) -> Tensor

torch.fix(self : Tensor) -> Tensor

torch.fix(self : Tensor,
          out : Tensor) -> Tensor

torch.fix_(self : Tensor) -> Tensor

torch.flatten(self : Tensor,
              start_dim : int=0,
              end_dim : int=-1) -> Tensor

torch.flatten(self : Tensor,
              dims : List[str],
              out_dim : str) -> Tensor

torch.flatten(self : Tensor,
              start_dim : int,
              end_dim : int,
              out_dim : str) -> Tensor

torch.flatten(self : Tensor,
              start_dim : str,
              end_dim : str,
              out_dim : str) -> Tensor

torch.flip(self : Tensor,
           dims : List[int]) -> Tensor

torch.flip(self : Tensor,
           dims : List[int],
           out : Tensor) -> Tensor

torch.fliplr(self : Tensor) -> Tensor

torch.flipud(self : Tensor) -> Tensor

torch.float_power(self : Tensor,
                  exponent : Tensor) -> Tensor

torch.float_power(self : Tensor,
                  exponent : number) -> Tensor

torch.float_power(self : number,
                  exponent : Tensor) -> Tensor

torch.float_power(self : Tensor,
                  exponent : Tensor,
                  out : Tensor) -> Tensor

torch.float_power(self : number,
                  exponent : Tensor,
                  out : Tensor) -> Tensor

torch.float_power(self : Tensor,
                  exponent : number,
                  out : Tensor) -> Tensor

torch.floor(self : Tensor) -> Tensor

torch.floor(self : Tensor,
            out : Tensor) -> Tensor

torch.floor(a : int) -> int

torch.floor(a : float) -> int

torch.floor(a : number) -> number

torch.floor_(self : Tensor) -> Tensor

torch.floor_divide(self : Tensor,
                   other : Tensor) -> Tensor

torch.floor_divide(self : Tensor,
                   other : number) -> Tensor

torch.floor_divide(self : Tensor,
                   other : Tensor,
                   out : Tensor) -> Tensor

torch.floor_divide(self : Tensor,
                   other : number,
                   out : Tensor) -> Tensor

torch.fmax(self : Tensor,
           other : Tensor) -> Tensor

torch.fmax(self : Tensor,
           other : Tensor,
           out : Tensor) -> Tensor

torch.fmin(self : Tensor,
           other : Tensor) -> Tensor

torch.fmin(self : Tensor,
           other : Tensor,
           out : Tensor) -> Tensor

torch.fmod(self : Tensor,
           other : Tensor) -> Tensor

torch.fmod(self : Tensor,
           other : number) -> Tensor

torch.fmod(self : Tensor,
           other : Tensor,
           out : Tensor) -> Tensor

torch.fmod(self : Tensor,
           other : number,
           out : Tensor) -> Tensor

torch.fmod(a : int,
           b : int) -> float

torch.fmod(a : float,
           b : float) -> float

torch.fmod(a : int,
           b : float) -> float

torch.fmod(a : float,
           b : int) -> float

torch.fmod(a : number,
           b : number) -> float

torch.frac(self : Tensor) -> Tensor

torch.frac(self : Tensor,
           out : Tensor) -> Tensor

torch.frac_(self : Tensor) -> Tensor

torch.frexp(self : Tensor) -> Tuple[Tensor, Tensor]

torch.frexp(self : Tensor,
            mantissa : Tensor,
            exponent : Tensor) -> Tuple[Tensor, Tensor]

torch.frexp(a : float) -> Tuple[float, int]

torch.frobenius_norm(self : Tensor,
                     dim : List[int],
                     keepdim : bool=False) -> Tensor

torch.frobenius_norm(self : Tensor,
                     dim : List[int],
                     keepdim : bool=False,
                     out : Tensor) -> Tensor

torch.from_file(filename : str,
                shared : Optional[bool],
                size : Optional[int]=0,
                dtype : Optional[int],
                layout : Optional[int],
                device : Optional[Device],
                pin_memory : Optional[bool]) -> Tensor

torch.from_file(filename : str,
                shared : Optional[bool],
                size : Optional[int]=0,
                out : Tensor) -> Tensor

torch.full(size : List[int],
           fill_value : number,
           names : Optional[List[str]],
           dtype : Optional[int],
           layout : Optional[int],
           device : Optional[Device],
           pin_memory : Optional[bool]) -> Tensor

torch.full(size : List[int],
           fill_value : number,
           dtype : Optional[int],
           layout : Optional[int],
           device : Optional[Device],
           pin_memory : Optional[bool]) -> Tensor

torch.full(size : List[int],
           fill_value : number,
           names : Optional[List[str]],
           out : Tensor) -> Tensor

torch.full(size : List[int],
           fill_value : number,
           out : Tensor) -> Tensor

torch.full_like(self : Tensor,
                fill_value : number,
                dtype : Optional[int],
                layout : Optional[int],
                device : Optional[Device],
                pin_memory : Optional[bool],
                memory_format : Optional[int]) -> Tensor

torch.full_like(self : Tensor,
                fill_value : number,
                memory_format : Optional[int],
                out : Tensor) -> Tensor

torch.fused_moving_avg_obs_fake_quant(self : Tensor,
                                      observer_on : Tensor,
                                      fake_quant_on : Tensor,
                                      running_min : Tensor,
                                      running_max : Tensor,
                                      scale : Tensor,
                                      zero_point : Tensor,
                                      averaging_const : float,
                                      quant_min : int,
                                      quant_max : int,
                                      ch_axis : int,
                                      per_row_fake_quant : bool=False,
                                      symmetric_quant : bool=False) -> Tensor

torch.gather(self : Tensor,
             dim : int,
             index : Tensor,
             sparse_grad : bool=False) -> Tensor

torch.gather(self : Tensor,
             dim : int,
             index : Tensor,
             sparse_grad : bool=False,
             out : Tensor) -> Tensor

torch.gather(self : Tensor,
             dim : str,
             index : Tensor,
             sparse_grad : bool=False) -> Tensor

torch.gather(self : Tensor,
             dim : str,
             index : Tensor,
             sparse_grad : bool=False,
             out : Tensor) -> Tensor

torch.gcd(self : Tensor,
          other : Tensor) -> Tensor

torch.gcd(self : Tensor,
          other : Tensor,
          out : Tensor) -> Tensor

torch.gcd(a : int,
          b : int) -> int

torch.gcd_(self : Tensor,
           other : Tensor) -> Tensor

torch.ge(self : Tensor,
         other : Tensor) -> Tensor

torch.ge(self : Tensor,
         other : number) -> Tensor

torch.ge(self : Tensor,
         other : number,
         out : Tensor) -> Tensor

torch.ge(self : Tensor,
         other : Tensor,
         out : Tensor) -> Tensor

torch.ge(a : int,
         b : int) -> bool

torch.ge(a : float,
         b : float) -> bool

torch.ge(a : int,
         b : float) -> bool

torch.ge(a : float,
         b : int) -> bool

torch.ge(a : number,
         b : number) -> bool

torch.ge(a : str,
         b : str) -> bool

torch.geqrf(self : Tensor) -> Tuple[Tensor, Tensor]

torch.geqrf(self : Tensor,
            a : Tensor,
            tau : Tensor) -> Tuple[Tensor, Tensor]

torch.ger(self : Tensor,
          vec2 : Tensor) -> Tensor

torch.ger(self : Tensor,
          vec2 : Tensor,
          out : Tensor) -> Tensor

torch.get_autocast_dtype(device_type : str) -> int

torch.get_device(self : Tensor) -> int

torch.gradient(self : Tensor,
               spacing : Optional[number],
               dim : Optional[int],
               edge_order : int=1) -> List[Tensor]

torch.gradient(self : Tensor,
               spacing : number,
               dim : List[int],
               edge_order : int=1) -> List[Tensor]

torch.gradient(self : Tensor,
               dim : List[int],
               edge_order : int=1) -> List[Tensor]

torch.gradient(self : Tensor,
               spacing : List[number],
               dim : Optional[int],
               edge_order : int=1) -> List[Tensor]

torch.gradient(self : Tensor,
               spacing : List[number],
               dim : List[int],
               edge_order : int=1) -> List[Tensor]

torch.gradient(self : Tensor,
               spacing : List[Tensor],
               dim : Optional[int],
               edge_order : int=1) -> List[Tensor]

torch.gradient(self : Tensor,
               spacing : List[Tensor],
               dim : List[int],
               edge_order : int=1) -> List[Tensor]

torch.greater(self : Tensor,
              other : Tensor) -> Tensor

torch.greater(self : Tensor,
              other : number) -> Tensor

torch.greater(self : Tensor,
              other : number,
              out : Tensor) -> Tensor

torch.greater(self : Tensor,
              other : Tensor,
              out : Tensor) -> Tensor

torch.greater_equal(self : Tensor,
                    other : Tensor) -> Tensor

torch.greater_equal(self : Tensor,
                    other : number) -> Tensor

torch.greater_equal(self : Tensor,
                    other : number,
                    out : Tensor) -> Tensor

torch.greater_equal(self : Tensor,
                    other : Tensor,
                    out : Tensor) -> Tensor

torch.grid_sampler(input : Tensor,
                   grid : Tensor,
                   interpolation_mode : int,
                   padding_mode : int,
                   align_corners : bool) -> Tensor

torch.grid_sampler_2d(input : Tensor,
                      grid : Tensor,
                      interpolation_mode : int,
                      padding_mode : int,
                      align_corners : bool) -> Tensor

torch.grid_sampler_2d(input : Tensor,
                      grid : Tensor,
                      interpolation_mode : int,
                      padding_mode : int,
                      align_corners : bool,
                      out : Tensor) -> Tensor

torch.grid_sampler_3d(input : Tensor,
                      grid : Tensor,
                      interpolation_mode : int,
                      padding_mode : int,
                      align_corners : bool) -> Tensor

torch.grid_sampler_3d(input : Tensor,
                      grid : Tensor,
                      interpolation_mode : int,
                      padding_mode : int,
                      align_corners : bool,
                      out : Tensor) -> Tensor

torch.group_norm(input : Tensor,
                 num_groups : int,
                 weight : Optional[Tensor],
                 bias : Optional[Tensor],
                 eps : float=1e-05,
                 cudnn_enabled : bool=True) -> Tensor

torch.gru(input : Tensor,
          hx : Tensor,
          params : List[Tensor],
          has_biases : bool,
          num_layers : int,
          dropout : float,
          train : bool,
          bidirectional : bool,
          batch_first : bool) -> Tuple[Tensor, Tensor]

torch.gru(data : Tensor,
          batch_sizes : Tensor,
          hx : Tensor,
          params : List[Tensor],
          has_biases : bool,
          num_layers : int,
          dropout : float,
          train : bool,
          bidirectional : bool) -> Tuple[Tensor, Tensor]

torch.gru_cell(input : Tensor,
               hx : Tensor,
               w_ih : Tensor,
               w_hh : Tensor,
               b_ih : Optional[Tensor],
               b_hh : Optional[Tensor]) -> Tensor

torch.gt(self : Tensor,
         other : Tensor) -> Tensor

torch.gt(self : Tensor,
         other : number) -> Tensor

torch.gt(self : Tensor,
         other : number,
         out : Tensor) -> Tensor

torch.gt(self : Tensor,
         other : Tensor,
         out : Tensor) -> Tensor

torch.gt(a : int,
         b : int) -> bool

torch.gt(a : float,
         b : float) -> bool

torch.gt(a : int,
         b : float) -> bool

torch.gt(a : float,
         b : int) -> bool

torch.gt(a : number,
         b : number) -> bool

torch.gt(a : str,
         b : str) -> bool

torch.hamming_window(window_length : int,
                     dtype : Optional[int],
                     layout : Optional[int],
                     device : Optional[Device],
                     pin_memory : Optional[bool]) -> Tensor

torch.hamming_window(window_length : int,
                     periodic : bool,
                     dtype : Optional[int],
                     layout : Optional[int],
                     device : Optional[Device],
                     pin_memory : Optional[bool]) -> Tensor

torch.hamming_window(window_length : int,
                     periodic : bool,
                     alpha : float,
                     dtype : Optional[int],
                     layout : Optional[int],
                     device : Optional[Device],
                     pin_memory : Optional[bool]) -> Tensor

torch.hamming_window(window_length : int,
                     periodic : bool,
                     alpha : float,
                     beta : float,
                     dtype : Optional[int],
                     layout : Optional[int],
                     device : Optional[Device],
                     pin_memory : Optional[bool]) -> Tensor

torch.hamming_window(window_length : int,
                     out : Tensor) -> Tensor

torch.hamming_window(window_length : int,
                     periodic : bool,
                     out : Tensor) -> Tensor

torch.hamming_window(window_length : int,
                     periodic : bool,
                     alpha : float,
                     out : Tensor) -> Tensor

torch.hamming_window(window_length : int,
                     periodic : bool,
                     alpha : float,
                     beta : float,
                     out : Tensor) -> Tensor

torch.hann_window(window_length : int,
                  dtype : Optional[int],
                  layout : Optional[int],
                  device : Optional[Device],
                  pin_memory : Optional[bool]) -> Tensor

torch.hann_window(window_length : int,
                  periodic : bool,
                  dtype : Optional[int],
                  layout : Optional[int],
                  device : Optional[Device],
                  pin_memory : Optional[bool]) -> Tensor

torch.hann_window(window_length : int,
                  out : Tensor) -> Tensor

torch.hann_window(window_length : int,
                  periodic : bool,
                  out : Tensor) -> Tensor

torch.hardshrink(self : Tensor,
                 lambd : number=0.5) -> Tensor

torch.hardshrink(self : Tensor,
                 lambd : number=0.5,
                 out : Tensor) -> Tensor

torch.heaviside(self : Tensor,
                values : Tensor) -> Tensor

torch.heaviside(self : Tensor,
                values : Tensor,
                out : Tensor) -> Tensor

torch.hinge_embedding_loss(self : Tensor,
                           target : Tensor,
                           margin : float=1.0,
                           reduction : int=1) -> Tensor

torch.histc(self : Tensor,
            bins : int=100,
            min : number=0,
            max : number=0) -> Tensor

torch.histc(self : Tensor,
            bins : int=100,
            min : number=0,
            max : number=0,
            out : Tensor) -> Tensor

torch.histogram(self : Tensor,
                bins : Tensor,
                weight : Optional[Tensor],
                density : bool=False) -> Tuple[Tensor, Tensor]

torch.histogram(self : Tensor,
                bins : Tensor,
                weight : Optional[Tensor],
                density : bool=False,
                hist : Tensor,
                bin_edges : Tensor) -> Tuple[Tensor, Tensor]

torch.histogram(self : Tensor,
                bins : int=100,
                range : Optional[List[float]],
                weight : Optional[Tensor],
                density : bool=False) -> Tuple[Tensor, Tensor]

torch.histogram(self : Tensor,
                bins : int=100,
                range : Optional[List[float]],
                weight : Optional[Tensor],
                density : bool=False,
                hist : Tensor,
                bin_edges : Tensor) -> Tuple[Tensor, Tensor]

torch.histogramdd(self : Tensor,
                  bins : List[int],
                  range : Optional[List[float]],
                  weight : Optional[Tensor],
                  density : bool=False) -> Tuple[Tensor, List[Tensor]]

torch.histogramdd(self : Tensor,
                  bins : int,
                  range : Optional[List[float]],
                  weight : Optional[Tensor],
                  density : bool=False) -> Tuple[Tensor, List[Tensor]]

torch.histogramdd(self : Tensor,
                  bins : List[Tensor],
                  range : Optional[List[float]],
                  weight : Optional[Tensor],
                  density : bool=False) -> Tuple[Tensor, List[Tensor]]

torch.hsplit(self : Tensor,
             sections : int) -> List[Tensor]

torch.hsplit(self : Tensor,
             indices : List[int]) -> List[Tensor]

torch.hspmm(mat1 : Tensor,
            mat2 : Tensor,
            out : Tensor) -> Tensor

torch.hspmm(mat1 : Tensor,
            mat2 : Tensor) -> Tensor

torch.hstack(tensors : List[Tensor]) -> Tensor

torch.hstack(tensors : List[Tensor],
             out : Tensor) -> Tensor

torch.hypot(self : Tensor,
            other : Tensor) -> Tensor

torch.hypot(self : Tensor,
            other : Tensor,
            out : Tensor) -> Tensor

torch.i0(self : Tensor) -> Tensor

torch.i0(self : Tensor,
         out : Tensor) -> Tensor

torch.i0_(self : Tensor) -> Tensor

torch.igamma(self : Tensor,
             other : Tensor) -> Tensor

torch.igamma(self : Tensor,
             other : Tensor,
             out : Tensor) -> Tensor

torch.igammac(self : Tensor,
              other : Tensor) -> Tensor

torch.igammac(self : Tensor,
              other : Tensor,
              out : Tensor) -> Tensor

torch.imag(self : Tensor) -> Tensor

torch.index_add(self : Tensor,
                dim : int,
                index : Tensor,
                source : Tensor,
                alpha : number=1) -> Tensor

torch.index_add(self : Tensor,
                dim : int,
                index : Tensor,
                source : Tensor,
                alpha : number=1,
                out : Tensor) -> Tensor

torch.index_add(self : Tensor,
                dim : str,
                index : Tensor,
                source : Tensor,
                alpha : number=1) -> Tensor

torch.index_copy(self : Tensor,
                 dim : int,
                 index : Tensor,
                 source : Tensor) -> Tensor

torch.index_copy(self : Tensor,
                 dim : str,
                 index : Tensor,
                 source : Tensor) -> Tensor

torch.index_copy(self : Tensor,
                 dim : int,
                 index : Tensor,
                 source : Tensor,
                 out : Tensor) -> Tensor

torch.index_fill(self : Tensor,
                 dim : int,
                 index : Tensor,
                 value : Tensor) -> Tensor

torch.index_fill(self : Tensor,
                 dim : int,
                 index : Tensor,
                 value : number) -> Tensor

torch.index_fill(self : Tensor,
                 dim : str,
                 index : Tensor,
                 value : number) -> Tensor

torch.index_fill(self : Tensor,
                 dim : str,
                 index : Tensor,
                 value : Tensor) -> Tensor

torch.index_fill(self : Tensor,
                 dim : int,
                 index : Tensor,
                 value : number,
                 out : Tensor) -> Tensor

torch.index_fill(self : Tensor,
                 dim : int,
                 index : Tensor,
                 value : Tensor,
                 out : Tensor) -> Tensor

torch.index_put(self : Tensor,
                indices : List[Optional[Tensor]],
                values : Tensor,
                accumulate : bool=False) -> Tensor

torch.index_put(self : Tensor,
                indices : List[Optional[Tensor]],
                values : Tensor,
                accumulate : bool=False,
                out : Tensor) -> Tensor

torch.index_put(self : Tensor,
                indices : List[Tensor],
                values : Tensor,
                accumulate : bool=False) -> Tensor

torch.index_put_(self : Tensor,
                 indices : List[Optional[Tensor]],
                 values : Tensor,
                 accumulate : bool=False) -> Tensor

torch.index_put_(self : Tensor,
                 indices : List[Tensor],
                 values : Tensor,
                 accumulate : bool=False) -> Tensor

torch.index_reduce(self : Tensor,
                   dim : int,
                   index : Tensor,
                   source : Tensor,
                   reduce : str,
                   include_self : bool=True) -> Tensor

torch.index_reduce(self : Tensor,
                   dim : int,
                   index : Tensor,
                   source : Tensor,
                   reduce : str,
                   include_self : bool=True,
                   out : Tensor) -> Tensor

torch.index_select(self : Tensor,
                   dim : int,
                   index : Tensor) -> Tensor

torch.index_select(self : Tensor,
                   dim : int,
                   index : Tensor,
                   out : Tensor) -> Tensor

torch.index_select(self : Tensor,
                   dim : str,
                   index : Tensor) -> Tensor

torch.index_select(self : Tensor,
                   dim : str,
                   index : Tensor,
                   out : Tensor) -> Tensor

torch.indices_copy(self : Tensor) -> Tensor

torch.indices_copy(self : Tensor,
                   out : Tensor) -> Tensor

torch.initial_seed(self : Generator) -> int

torch.inner(self : Tensor,
            other : Tensor) -> Tensor

torch.inner(self : Tensor,
            other : Tensor,
            out : Tensor) -> Tensor

torch.instance_norm(input : Tensor,
                    weight : Optional[Tensor],
                    bias : Optional[Tensor],
                    running_mean : Optional[Tensor],
                    running_var : Optional[Tensor],
                    use_input_stats : bool,
                    momentum : float,
                    eps : float,
                    cudnn_enabled : bool) -> Tensor

torch.int_repr(self : Tensor,
               out : Tensor) -> Tensor

torch.int_repr(self : Tensor) -> Tensor

torch.inverse(self : Tensor) -> Tensor

torch.inverse(self : Tensor,
              out : Tensor) -> Tensor

torch.is_autocast_cpu_enabled() -> bool

torch.is_autocast_enabled() -> bool

torch.is_complex(self : Tensor) -> bool

torch.is_conj(self : Tensor) -> bool

torch.is_distributed(self : Tensor) -> bool

torch.is_floating_point(self : Tensor) -> bool

torch.is_grad_enabled() -> bool

torch.is_inference(self : Tensor) -> bool

torch.is_neg(self : Tensor) -> bool

torch.is_nonzero(self : Tensor) -> bool

torch.is_same_size(self : Tensor,
                   other : Tensor) -> bool

torch.is_signed(self : Tensor) -> bool

torch.is_vulkan_available() -> bool

torch.isclose(self : Tensor,
              other : Tensor,
              rtol : float=1e-05,
              atol : float=1e-08,
              equal_nan : bool=False) -> Tensor

torch.isfinite(self : Tensor) -> Tensor

torch.isfinite(a : float) -> bool

torch.isfinite(a : complex) -> bool

torch.isin(elements : Tensor,
           test_elements : Tensor,
           assume_unique : bool=False,
           invert : bool=False) -> Tensor

torch.isin(elements : Tensor,
           test_elements : Tensor,
           assume_unique : bool=False,
           invert : bool=False,
           out : Tensor) -> Tensor

torch.isin(elements : Tensor,
           test_element : number,
           assume_unique : bool=False,
           invert : bool=False) -> Tensor

torch.isin(elements : Tensor,
           test_element : number,
           assume_unique : bool=False,
           invert : bool=False,
           out : Tensor) -> Tensor

torch.isin(element : number,
           test_elements : Tensor,
           assume_unique : bool=False,
           invert : bool=False) -> Tensor

torch.isin(element : number,
           test_elements : Tensor,
           assume_unique : bool=False,
           invert : bool=False,
           out : Tensor) -> Tensor

torch.isinf(self : Tensor) -> Tensor

torch.isinf(self : Tensor,
            out : Tensor) -> Tensor

torch.isinf(a : float) -> bool

torch.isinf(a : complex) -> bool

torch.isnan(self : Tensor) -> Tensor

torch.isnan(self : Tensor,
            out : Tensor) -> Tensor

torch.isnan(a : float) -> bool

torch.isnan(a : complex) -> bool

torch.isneginf(self : Tensor) -> Tensor

torch.isneginf(self : Tensor,
               out : Tensor) -> Tensor

torch.isposinf(self : Tensor) -> Tensor

torch.isposinf(self : Tensor,
               out : Tensor) -> Tensor

torch.isreal(self : Tensor) -> Tensor

torch.istft(self : Tensor,
            n_fft : int,
            hop_length : Optional[int],
            win_length : Optional[int],
            window : Optional[Tensor],
            center : bool=True,
            normalized : bool=False,
            onesided : Optional[bool],
            length : Optional[int],
            return_complex : bool=False) -> Tensor

torch.kaiser_window(window_length : int,
                    dtype : Optional[int],
                    layout : Optional[int],
                    device : Optional[Device],
                    pin_memory : Optional[bool]) -> Tensor

torch.kaiser_window(window_length : int,
                    periodic : bool,
                    dtype : Optional[int],
                    layout : Optional[int],
                    device : Optional[Device],
                    pin_memory : Optional[bool]) -> Tensor

torch.kaiser_window(window_length : int,
                    periodic : bool,
                    beta : float,
                    dtype : Optional[int],
                    layout : Optional[int],
                    device : Optional[Device],
                    pin_memory : Optional[bool]) -> Tensor

torch.kaiser_window(window_length : int,
                    out : Tensor) -> Tensor

torch.kaiser_window(window_length : int,
                    periodic : bool,
                    out : Tensor) -> Tensor

torch.kaiser_window(window_length : int,
                    periodic : bool,
                    beta : float,
                    out : Tensor) -> Tensor

torch.kl_div(self : Tensor,
             target : Tensor,
             reduction : int=1,
             log_target : bool=False) -> Tensor

torch.kron(self : Tensor,
           other : Tensor) -> Tensor

torch.kron(self : Tensor,
           other : Tensor,
           out : Tensor) -> Tensor

torch.kthvalue(self : Tensor,
               k : int,
               dim : int=-1,
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.kthvalue(self : Tensor,
               k : int,
               dim : str,
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.kthvalue(self : Tensor,
               k : int,
               dim : str,
               keepdim : bool=False,
               values : Tensor,
               indices : Tensor) -> Tuple[Tensor, Tensor]

torch.kthvalue(self : Tensor,
               k : int,
               dim : int=-1,
               keepdim : bool=False,
               values : Tensor,
               indices : Tensor) -> Tuple[Tensor, Tensor]

torch.layer_norm(input : Tensor,
                 normalized_shape : List[int],
                 weight : Optional[Tensor],
                 bias : Optional[Tensor],
                 eps : float=1e-05,
                 cudnn_enable : bool=True) -> Tensor

torch.lcm(self : Tensor,
          other : Tensor) -> Tensor

torch.lcm(self : Tensor,
          other : Tensor,
          out : Tensor) -> Tensor

torch.lcm_(self : Tensor,
           other : Tensor) -> Tensor

torch.ldexp(self : Tensor,
            other : Tensor) -> Tensor

torch.ldexp(self : Tensor,
            other : Tensor,
            out : Tensor) -> Tensor

torch.ldexp(x : float,
            i : int) -> float

torch.ldexp_(self : Tensor,
             other : Tensor) -> Tensor

torch.le(self : Tensor,
         other : Tensor) -> Tensor

torch.le(self : Tensor,
         other : number) -> Tensor

torch.le(self : Tensor,
         other : number,
         out : Tensor) -> Tensor

torch.le(self : Tensor,
         other : Tensor,
         out : Tensor) -> Tensor

torch.le(a : int,
         b : int) -> bool

torch.le(a : float,
         b : float) -> bool

torch.le(a : int,
         b : float) -> bool

torch.le(a : float,
         b : int) -> bool

torch.le(a : number,
         b : number) -> bool

torch.le(a : str,
         b : str) -> bool

torch.lerp(self : Tensor,
           end : Tensor,
           weight : number) -> Tensor

torch.lerp(self : Tensor,
           end : Tensor,
           weight : Tensor) -> Tensor

torch.lerp(self : Tensor,
           end : Tensor,
           weight : number,
           out : Tensor) -> Tensor

torch.lerp(self : Tensor,
           end : Tensor,
           weight : Tensor,
           out : Tensor) -> Tensor

torch.less(self : Tensor,
           other : Tensor) -> Tensor

torch.less(self : Tensor,
           other : number) -> Tensor

torch.less(self : Tensor,
           other : number,
           out : Tensor) -> Tensor

torch.less(self : Tensor,
           other : Tensor,
           out : Tensor) -> Tensor

torch.less_equal(self : Tensor,
                 other : Tensor) -> Tensor

torch.less_equal(self : Tensor,
                 other : number) -> Tensor

torch.less_equal(self : Tensor,
                 other : number,
                 out : Tensor) -> Tensor

torch.less_equal(self : Tensor,
                 other : Tensor,
                 out : Tensor) -> Tensor

torch.lgamma(self : Tensor) -> Tensor

torch.lgamma(self : Tensor,
             out : Tensor) -> Tensor

torch.lgamma(a : int) -> float

torch.lgamma(a : float) -> float

torch.lgamma(a : number) -> number

torch.linspace(start : Tensor,
               end : Tensor,
               steps : int,
               dtype : Optional[int],
               layout : Optional[int],
               device : Optional[Device],
               pin_memory : Optional[bool]) -> Tensor

torch.linspace(start : Tensor,
               end : number,
               steps : int,
               dtype : Optional[int],
               layout : Optional[int],
               device : Optional[Device],
               pin_memory : Optional[bool]) -> Tensor

torch.linspace(start : number,
               end : Tensor,
               steps : int,
               dtype : Optional[int],
               layout : Optional[int],
               device : Optional[Device],
               pin_memory : Optional[bool]) -> Tensor

torch.linspace(start : number,
               end : number,
               steps : int,
               dtype : Optional[int],
               layout : Optional[int],
               device : Optional[Device],
               pin_memory : Optional[bool]) -> Tensor

torch.linspace(start : number,
               end : number,
               steps : int,
               out : Tensor) -> Tensor

torch.linspace(start : Tensor,
               end : Tensor,
               steps : int,
               out : Tensor) -> Tensor

torch.linspace(start : Tensor,
               end : number,
               steps : int,
               out : Tensor) -> Tensor

torch.linspace(start : number,
               end : Tensor,
               steps : int,
               out : Tensor) -> Tensor

torch.log(self : Tensor) -> Tensor

torch.log(self : Tensor,
          out : Tensor) -> Tensor

torch.log(a : int) -> float

torch.log(a : float) -> float

torch.log(a : complex) -> complex

torch.log(a : number) -> number

torch.log(a : int,
          b : int) -> float

torch.log(a : float,
          b : float) -> float

torch.log(a : complex,
          b : complex) -> complex

torch.log(a : int,
          b : float) -> float

torch.log(a : float,
          b : int) -> float

torch.log(a : int,
          b : complex) -> complex

torch.log(a : complex,
          b : int) -> complex

torch.log(a : float,
          b : complex) -> complex

torch.log(a : complex,
          b : float) -> complex

torch.log(a : number,
          b : number) -> float

torch.log10(self : Tensor) -> Tensor

torch.log10(self : Tensor,
            out : Tensor) -> Tensor

torch.log10(a : int) -> float

torch.log10(a : float) -> float

torch.log10(a : complex) -> complex

torch.log10(a : number) -> number

torch.log10_(self : Tensor) -> Tensor

torch.log1p(self : Tensor) -> Tensor

torch.log1p(self : Tensor,
            out : Tensor) -> Tensor

torch.log1p(a : int) -> float

torch.log1p(a : float) -> float

torch.log1p(a : number) -> number

torch.log1p_(self : Tensor) -> Tensor

torch.log2(self : Tensor) -> Tensor

torch.log2(self : Tensor,
           out : Tensor) -> Tensor

torch.log2_(self : Tensor) -> Tensor

torch.log_(self : Tensor) -> Tensor

torch.log_softmax(self : Tensor,
                  dim : int,
                  dtype : Optional[int]) -> Tensor

torch.log_softmax(self : Tensor,
                  dim : str,
                  dtype : Optional[int]) -> Tensor

torch.log_softmax(self : Tensor,
                  dim : int,
                  dtype : Optional[int],
                  out : Tensor) -> Tensor

torch.logaddexp(self : Tensor,
                other : Tensor) -> Tensor

torch.logaddexp(self : Tensor,
                other : Tensor,
                out : Tensor) -> Tensor

torch.logaddexp2(self : Tensor,
                 other : Tensor) -> Tensor

torch.logaddexp2(self : Tensor,
                 other : Tensor,
                 out : Tensor) -> Tensor

torch.logcumsumexp(self : Tensor,
                   dim : int) -> Tensor

torch.logcumsumexp(self : Tensor,
                   dim : str) -> Tensor

torch.logcumsumexp(self : Tensor,
                   dim : str,
                   out : Tensor) -> Tensor

torch.logcumsumexp(self : Tensor,
                   dim : int,
                   out : Tensor) -> Tensor

torch.logdet(self : Tensor) -> Tensor

torch.logical_and(self : Tensor,
                  other : Tensor) -> Tensor

torch.logical_and(self : Tensor,
                  other : Tensor,
                  out : Tensor) -> Tensor

torch.logical_not(self : Tensor) -> Tensor

torch.logical_not(self : Tensor,
                  out : Tensor) -> Tensor

torch.logical_or(self : Tensor,
                 other : Tensor) -> Tensor

torch.logical_or(self : Tensor,
                 other : Tensor,
                 out : Tensor) -> Tensor

torch.logical_xor(self : Tensor,
                  other : Tensor) -> Tensor

torch.logical_xor(self : Tensor,
                  other : Tensor,
                  out : Tensor) -> Tensor

torch.logit(self : Tensor,
            eps : Optional[float]) -> Tensor

torch.logit(self : Tensor,
            eps : Optional[float],
            out : Tensor) -> Tensor

torch.logit_(self : Tensor,
             eps : Optional[float]) -> Tensor

torch.logspace(start : Tensor,
               end : Tensor,
               steps : int,
               base : float=10.0,
               dtype : Optional[int],
               layout : Optional[int],
               device : Optional[Device],
               pin_memory : Optional[bool]) -> Tensor

torch.logspace(start : Tensor,
               end : number,
               steps : int,
               base : float=10.0,
               dtype : Optional[int],
               layout : Optional[int],
               device : Optional[Device],
               pin_memory : Optional[bool]) -> Tensor

torch.logspace(start : number,
               end : Tensor,
               steps : int,
               base : float=10.0,
               dtype : Optional[int],
               layout : Optional[int],
               device : Optional[Device],
               pin_memory : Optional[bool]) -> Tensor

torch.logspace(start : number,
               end : number,
               steps : int,
               base : float=10.0,
               dtype : Optional[int],
               layout : Optional[int],
               device : Optional[Device],
               pin_memory : Optional[bool]) -> Tensor

torch.logspace(start : number,
               end : number,
               steps : int,
               base : float=10.0,
               out : Tensor) -> Tensor

torch.logspace(start : Tensor,
               end : Tensor,
               steps : int,
               base : float=10.0,
               out : Tensor) -> Tensor

torch.logspace(start : Tensor,
               end : number,
               steps : int,
               base : float=10.0,
               out : Tensor) -> Tensor

torch.logspace(start : number,
               end : Tensor,
               steps : int,
               base : float=10.0,
               out : Tensor) -> Tensor

torch.logsumexp(self : Tensor,
                dim : List[int],
                keepdim : bool=False) -> Tensor

torch.logsumexp(self : Tensor,
                dim : List[str],
                keepdim : bool=False) -> Tensor

torch.logsumexp(self : Tensor,
                dim : List[str],
                keepdim : bool=False,
                out : Tensor) -> Tensor

torch.logsumexp(self : Tensor,
                dim : List[int],
                keepdim : bool=False,
                out : Tensor) -> Tensor

torch.lstm(input : Tensor,
           hx : List[Tensor],
           params : List[Tensor],
           has_biases : bool,
           num_layers : int,
           dropout : float,
           train : bool,
           bidirectional : bool,
           batch_first : bool) -> Tuple[Tensor, Tensor, Tensor]

torch.lstm(data : Tensor,
           batch_sizes : Tensor,
           hx : List[Tensor],
           params : List[Tensor],
           has_biases : bool,
           num_layers : int,
           dropout : float,
           train : bool,
           bidirectional : bool) -> Tuple[Tensor, Tensor, Tensor]

torch.lstm_cell(input : Tensor,
                hx : List[Tensor],
                w_ih : Tensor,
                w_hh : Tensor,
                b_ih : Optional[Tensor],
                b_hh : Optional[Tensor]) -> Tuple[Tensor, Tensor]

torch.lt(self : Tensor,
         other : Tensor) -> Tensor

torch.lt(self : Tensor,
         other : number) -> Tensor

torch.lt(self : Tensor,
         other : number,
         out : Tensor) -> Tensor

torch.lt(self : Tensor,
         other : Tensor,
         out : Tensor) -> Tensor

torch.lt(a : int,
         b : int) -> bool

torch.lt(a : float,
         b : float) -> bool

torch.lt(a : int,
         b : float) -> bool

torch.lt(a : float,
         b : int) -> bool

torch.lt(a : number,
         b : number) -> bool

torch.lt(a : str,
         b : str) -> bool

torch.lu_solve(self : Tensor,
               LU_data : Tensor,
               LU_pivots : Tensor) -> Tensor

torch.lu_solve(self : Tensor,
               LU_data : Tensor,
               LU_pivots : Tensor,
               out : Tensor) -> Tensor

torch.lu_unpack(LU_data : Tensor,
                LU_pivots : Tensor,
                unpack_data : bool=True,
                unpack_pivots : bool=True) -> Tuple[Tensor, Tensor, Tensor]

torch.lu_unpack(LU_data : Tensor,
                LU_pivots : Tensor,
                unpack_data : bool=True,
                unpack_pivots : bool=True,
                P : Tensor,
                L : Tensor,
                U : Tensor) -> Tuple[Tensor, Tensor, Tensor]

torch.manual_seed(seed : int) -> Tuple[]

torch.manual_seed(self : Generator,
                  seed : int) -> Generator

torch.margin_ranking_loss(input1 : Tensor,
                          input2 : Tensor,
                          target : Tensor,
                          margin : float=0.0,
                          reduction : int=1) -> Tensor

torch.masked_fill(self : Tensor,
                  mask : Tensor,
                  value : number) -> Tensor

torch.masked_fill(self : Tensor,
                  mask : Tensor,
                  value : Tensor) -> Tensor

torch.masked_fill(self : Tensor,
                  mask : Tensor,
                  value : number,
                  out : Tensor) -> Tensor

torch.masked_fill(self : Tensor,
                  mask : Tensor,
                  value : Tensor,
                  out : Tensor) -> Tensor

torch.masked_scatter(self : Tensor,
                     mask : Tensor,
                     source : Tensor) -> Tensor

torch.masked_scatter(self : Tensor,
                     mask : Tensor,
                     source : Tensor,
                     out : Tensor) -> Tensor

torch.masked_select(self : Tensor,
                    mask : Tensor) -> Tensor

torch.masked_select(self : Tensor,
                    mask : Tensor,
                    out : Tensor) -> Tensor

torch.matmul(self : Tensor,
             other : Tensor) -> Tensor

torch.matmul(self : Tensor,
             other : Tensor,
             out : Tensor) -> Tensor

torch.matrix_exp(self : Tensor) -> Tensor

torch.matrix_power(self : Tensor,
                   n : int) -> Tensor

torch.matrix_power(self : Tensor,
                   n : int,
                   out : Tensor) -> Tensor

torch.max(self : Tensor,
          other : Tensor) -> Tensor

torch.max(self : Tensor) -> Tensor

torch.max(self : Tensor,
          dim : int,
          keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.max(self : Tensor,
          dim : int,
          keepdim : bool=False,
          max : Tensor,
          max_values : Tensor) -> Tuple[Tensor, Tensor]

torch.max(self : Tensor,
          dim : str,
          keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.max(self : Tensor,
          dim : str,
          keepdim : bool=False,
          max : Tensor,
          max_values : Tensor) -> Tuple[Tensor, Tensor]

torch.max(self : Tensor,
          out : Tensor) -> Tensor

torch.max(self : Tensor,
          other : Tensor,
          out : Tensor) -> Tensor

torch.max_pool1d(self : Tensor,
                 kernel_size : List[int],
                 stride : List[int]=[],
                 padding : List[int]=[0],
                 dilation : List[int]=[1],
                 ceil_mode : bool=False) -> Tensor

torch.max_pool1d_with_indices(self : Tensor,
                              kernel_size : List[int],
                              stride : List[int]=[],
                              padding : List[int]=[0],
                              dilation : List[int]=[1],
                              ceil_mode : bool=False) -> Tuple[Tensor, Tensor]

torch.max_pool2d(self : Tensor,
                 kernel_size : List[int],
                 stride : List[int]=[],
                 padding : List[int]=[0, 0],
                 dilation : List[int]=[1, 1],
                 ceil_mode : bool=False) -> Tensor

torch.max_pool3d(self : Tensor,
                 kernel_size : List[int],
                 stride : List[int]=[],
                 padding : List[int]=[0, 0, 0],
                 dilation : List[int]=[1, 1, 1],
                 ceil_mode : bool=False) -> Tensor

torch.maximum(self : Tensor,
              other : Tensor) -> Tensor

torch.maximum(self : Tensor,
              other : Tensor,
              out : Tensor) -> Tensor

torch.mean(self : Tensor,
           dtype : Optional[int]) -> Tensor

torch.mean(self : Tensor,
           dim : Optional[List[int]],
           keepdim : bool=False,
           dtype : Optional[int]) -> Tensor

torch.mean(self : Tensor,
           dim : List[str],
           keepdim : bool=False,
           dtype : Optional[int]) -> Tensor

torch.mean(self : Tensor,
           dim : List[str],
           keepdim : bool=False,
           dtype : Optional[int],
           out : Tensor) -> Tensor

torch.mean(self : Tensor,
           dim : Optional[List[int]],
           keepdim : bool=False,
           dtype : Optional[int],
           out : Tensor) -> Tensor

torch.mean(self : Tensor,
           dtype : Optional[int],
           out : Tensor) -> Tensor

torch.median(self : Tensor) -> Tensor

torch.median(self : Tensor,
             dim : int,
             keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.median(self : Tensor,
             dim : int,
             keepdim : bool=False,
             values : Tensor,
             indices : Tensor) -> Tuple[Tensor, Tensor]

torch.median(self : Tensor,
             dim : str,
             keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.median(self : Tensor,
             dim : str,
             keepdim : bool=False,
             values : Tensor,
             indices : Tensor) -> Tuple[Tensor, Tensor]

torch.median(self : Tensor,
             out : Tensor) -> Tensor

torch.meshgrid(tensors : List[Tensor]) -> List[Tensor]

torch.meshgrid(tensors : List[Tensor],
               indexing : str) -> List[Tensor]

torch.min(self : Tensor,
          other : Tensor) -> Tensor

torch.min(self : Tensor) -> Tensor

torch.min(self : Tensor,
          dim : int,
          keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.min(self : Tensor,
          dim : int,
          keepdim : bool=False,
          min : Tensor,
          min_indices : Tensor) -> Tuple[Tensor, Tensor]

torch.min(self : Tensor,
          dim : str,
          keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.min(self : Tensor,
          dim : str,
          keepdim : bool=False,
          min : Tensor,
          min_indices : Tensor) -> Tuple[Tensor, Tensor]

torch.min(self : Tensor,
          out : Tensor) -> Tensor

torch.min(self : Tensor,
          other : Tensor,
          out : Tensor) -> Tensor

torch.minimum(self : Tensor,
              other : Tensor) -> Tensor

torch.minimum(self : Tensor,
              other : Tensor,
              out : Tensor) -> Tensor

torch.miopen_batch_norm(input : Tensor,
                        weight : Tensor,
                        bias : Optional[Tensor],
                        running_mean : Optional[Tensor],
                        running_var : Optional[Tensor],
                        training : bool,
                        exponential_average_factor : float,
                        epsilon : float) -> Tuple[Tensor, Tensor, Tensor]

torch.miopen_batch_norm(input : Tensor,
                        weight : Tensor,
                        bias : Optional[Tensor],
                        running_mean : Optional[Tensor],
                        running_var : Optional[Tensor],
                        training : bool,
                        exponential_average_factor : float,
                        epsilon : float,
                        out0 : Tensor,
                        out1 : Tensor,
                        out2 : Tensor) -> Tuple[Tensor, Tensor, Tensor]

torch.miopen_convolution(self : Tensor,
                         weight : Tensor,
                         bias : Optional[Tensor],
                         padding : List[int],
                         stride : List[int],
                         dilation : List[int],
                         groups : int,
                         benchmark : bool,
                         deterministic : bool,
                         out : Tensor) -> Tensor

torch.miopen_convolution(self : Tensor,
                         weight : Tensor,
                         bias : Optional[Tensor],
                         padding : List[int],
                         stride : List[int],
                         dilation : List[int],
                         groups : int,
                         benchmark : bool,
                         deterministic : bool) -> Tensor

torch.miopen_convolution_add_relu(self : Tensor,
                                  weight : Tensor,
                                  z : Tensor,
                                  alpha : Optional[number],
                                  bias : Optional[Tensor],
                                  stride : List[int],
                                  padding : List[int],
                                  dilation : List[int],
                                  groups : int) -> Tensor

torch.miopen_convolution_relu(self : Tensor,
                              weight : Tensor,
                              bias : Optional[Tensor],
                              stride : List[int],
                              padding : List[int],
                              dilation : List[int],
                              groups : int) -> Tensor

torch.miopen_convolution_transpose(self : Tensor,
                                   weight : Tensor,
                                   bias : Optional[Tensor],
                                   padding : List[int],
                                   output_padding : List[int],
                                   stride : List[int],
                                   dilation : List[int],
                                   groups : int,
                                   benchmark : bool,
                                   deterministic : bool,
                                   out : Tensor) -> Tensor

torch.miopen_convolution_transpose(self : Tensor,
                                   weight : Tensor,
                                   bias : Optional[Tensor],
                                   padding : List[int],
                                   output_padding : List[int],
                                   stride : List[int],
                                   dilation : List[int],
                                   groups : int,
                                   benchmark : bool,
                                   deterministic : bool) -> Tensor

torch.miopen_depthwise_convolution(self : Tensor,
                                   weight : Tensor,
                                   bias : Optional[Tensor],
                                   padding : List[int],
                                   stride : List[int],
                                   dilation : List[int],
                                   groups : int,
                                   benchmark : bool,
                                   deterministic : bool,
                                   out : Tensor) -> Tensor

torch.miopen_depthwise_convolution(self : Tensor,
                                   weight : Tensor,
                                   bias : Optional[Tensor],
                                   padding : List[int],
                                   stride : List[int],
                                   dilation : List[int],
                                   groups : int,
                                   benchmark : bool,
                                   deterministic : bool) -> Tensor

torch.miopen_rnn(input : Tensor,
                 weight : List[Tensor],
                 weight_stride0 : int,
                 hx : Tensor,
                 cx : Optional[Tensor],
                 mode : int,
                 hidden_size : int,
                 num_layers : int,
                 batch_first : bool,
                 dropout : float,
                 train : bool,
                 bidirectional : bool,
                 batch_sizes : List[int],
                 dropout_state : Optional[Tensor],
                 out0 : Tensor,
                 out1 : Tensor,
                 out2 : Tensor,
                 out3 : Tensor,
                 out4 : Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]

torch.miopen_rnn(input : Tensor,
                 weight : List[Tensor],
                 weight_stride0 : int,
                 hx : Tensor,
                 cx : Optional[Tensor],
                 mode : int,
                 hidden_size : int,
                 num_layers : int,
                 batch_first : bool,
                 dropout : float,
                 train : bool,
                 bidirectional : bool,
                 batch_sizes : List[int],
                 dropout_state : Optional[Tensor]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]

torch.mkldnn_adaptive_avg_pool2d(self : Tensor,
                                 output_size : List[int],
                                 out : Tensor) -> Tensor

torch.mkldnn_adaptive_avg_pool2d(self : Tensor,
                                 output_size : List[int]) -> Tensor

torch.mkldnn_convolution(self : Tensor,
                         weight : Tensor,
                         bias : Optional[Tensor],
                         padding : List[int],
                         stride : List[int],
                         dilation : List[int],
                         groups : int) -> Tensor

torch.mkldnn_convolution(self : Tensor,
                         weight : Tensor,
                         bias : Optional[Tensor],
                         padding : List[int],
                         stride : List[int],
                         dilation : List[int],
                         groups : int,
                         out : Tensor) -> Tensor

torch.mkldnn_linear_backward_weights(grad_output : Tensor,
                                     input : Tensor,
                                     weight : Tensor,
                                     bias_defined : bool,
                                     out0 : Tensor,
                                     out1 : Tensor) -> Tuple[Tensor, Tensor]

torch.mkldnn_linear_backward_weights(grad_output : Tensor,
                                     input : Tensor,
                                     weight : Tensor,
                                     bias_defined : bool) -> Tuple[Tensor, Tensor]

torch.mkldnn_max_pool2d(self : Tensor,
                        kernel_size : List[int],
                        stride : List[int]=[],
                        padding : List[int]=[0, 0],
                        dilation : List[int]=[1, 1],
                        ceil_mode : bool=False,
                        out : Tensor) -> Tensor

torch.mkldnn_max_pool2d(self : Tensor,
                        kernel_size : List[int],
                        stride : List[int]=[],
                        padding : List[int]=[0, 0],
                        dilation : List[int]=[1, 1],
                        ceil_mode : bool=False) -> Tensor

torch.mkldnn_max_pool3d(self : Tensor,
                        kernel_size : List[int],
                        stride : List[int]=[],
                        padding : List[int]=[0, 0, 0],
                        dilation : List[int]=[1, 1, 1],
                        ceil_mode : bool=False,
                        out : Tensor) -> Tensor

torch.mkldnn_max_pool3d(self : Tensor,
                        kernel_size : List[int],
                        stride : List[int]=[],
                        padding : List[int]=[0, 0, 0],
                        dilation : List[int]=[1, 1, 1],
                        ceil_mode : bool=False) -> Tensor

torch.mkldnn_rnn_layer(input : Tensor,
                       weight0 : Tensor,
                       weight1 : Tensor,
                       weight2 : Tensor,
                       weight3 : Tensor,
                       hx_ : Tensor,
                       cx_ : Tensor,
                       reverse : bool,
                       batch_sizes : List[int],
                       mode : int,
                       hidden_size : int,
                       num_layers : int,
                       has_biases : bool,
                       bidirectional : bool,
                       batch_first : bool,
                       train : bool) -> Tuple[Tensor, Tensor, Tensor, Tensor]

torch.mkldnn_rnn_layer(input : Tensor,
                       weight0 : Tensor,
                       weight1 : Tensor,
                       weight2 : Tensor,
                       weight3 : Tensor,
                       hx_ : Tensor,
                       cx_ : Tensor,
                       reverse : bool,
                       batch_sizes : List[int],
                       mode : int,
                       hidden_size : int,
                       num_layers : int,
                       has_biases : bool,
                       bidirectional : bool,
                       batch_first : bool,
                       train : bool,
                       out0 : Tensor,
                       out1 : Tensor,
                       out2 : Tensor,
                       out3 : Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]

torch.mm(self : Tensor,
         mat2 : Tensor) -> Tensor

torch.mm(self : Tensor,
         mat2 : Tensor,
         out : Tensor) -> Tensor

torch.mode(self : Tensor,
           dim : int=-1,
           keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.mode(self : Tensor,
           dim : str,
           keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.mode(self : Tensor,
           dim : str,
           keepdim : bool=False,
           values : Tensor,
           indices : Tensor) -> Tuple[Tensor, Tensor]

torch.mode(self : Tensor,
           dim : int=-1,
           keepdim : bool=False,
           values : Tensor,
           indices : Tensor) -> Tuple[Tensor, Tensor]

torch.moveaxis(self : Tensor,
               source : List[int],
               destination : List[int]) -> Tensor

torch.moveaxis(self : Tensor,
               source : int,
               destination : int) -> Tensor

torch.movedim(self : Tensor,
              source : int,
              destination : int) -> Tensor

torch.movedim(self : Tensor,
              source : List[int],
              destination : List[int]) -> Tensor

torch.msort(self : Tensor) -> Tensor

torch.msort(self : Tensor,
            out : Tensor) -> Tensor

torch.mul(self : Tensor,
          other : Tensor) -> Tensor

torch.mul(self : Tensor,
          other : number) -> Tensor

torch.mul(self : Tensor,
          other : Tensor,
          out : Tensor) -> Tensor

torch.mul(self : Tensor,
          other : number,
          out : Tensor) -> Tensor

torch.mul(l : List[t],
          n : int) -> List[t]

torch.mul(n : int,
          l : List[t]) -> List[t]

torch.mul(a : int,
          b : int) -> int

torch.mul(a : complex,
          b : complex) -> complex

torch.mul(a : float,
          b : float) -> float

torch.mul(a : int,
          b : complex) -> complex

torch.mul(a : complex,
          b : int) -> complex

torch.mul(a : float,
          b : complex) -> complex

torch.mul(a : complex,
          b : float) -> complex

torch.mul(a : int,
          b : float) -> float

torch.mul(a : float,
          b : int) -> float

torch.mul(a : number,
          b : number) -> number

torch.multinomial(self : Tensor,
                  num_samples : int,
                  replacement : bool=False,
                  generator : Optional[Generator]) -> Tensor

torch.multinomial(self : Tensor,
                  num_samples : int,
                  replacement : bool=False,
                  generator : Optional[Generator],
                  out : Tensor) -> Tensor

torch.multiply(self : Tensor,
               other : Tensor) -> Tensor

torch.multiply(self : Tensor,
               other : number) -> Tensor

torch.multiply(self : Tensor,
               other : Tensor,
               out : Tensor) -> Tensor

torch.mv(self : Tensor,
         vec : Tensor) -> Tensor

torch.mv(self : Tensor,
         vec : Tensor,
         out : Tensor) -> Tensor

torch.mvlgamma(self : Tensor,
               p : int) -> Tensor

torch.mvlgamma(self : Tensor,
               p : int,
               out : Tensor) -> Tensor

torch.nan_to_num(self : Tensor,
                 nan : Optional[float],
                 posinf : Optional[float],
                 neginf : Optional[float]) -> Tensor

torch.nan_to_num(self : Tensor,
                 nan : Optional[float],
                 posinf : Optional[float],
                 neginf : Optional[float],
                 out : Tensor) -> Tensor

torch.nan_to_num_(self : Tensor,
                  nan : Optional[float],
                  posinf : Optional[float],
                  neginf : Optional[float]) -> Tensor

torch.nanmean(self : Tensor,
              dim : Optional[List[int]],
              keepdim : bool=False,
              dtype : Optional[int]) -> Tensor

torch.nanmean(self : Tensor,
              dim : Optional[List[int]],
              keepdim : bool=False,
              dtype : Optional[int],
              out : Tensor) -> Tensor

torch.nanmedian(self : Tensor) -> Tensor

torch.nanmedian(self : Tensor,
                dim : int,
                keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.nanmedian(self : Tensor,
                dim : int,
                keepdim : bool=False,
                values : Tensor,
                indices : Tensor) -> Tuple[Tensor, Tensor]

torch.nanmedian(self : Tensor,
                dim : str,
                keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.nanmedian(self : Tensor,
                dim : str,
                keepdim : bool=False,
                values : Tensor,
                indices : Tensor) -> Tuple[Tensor, Tensor]

torch.nanmedian(self : Tensor,
                out : Tensor) -> Tensor

torch.nanquantile(self : Tensor,
                  q : Tensor,
                  dim : Optional[int],
                  keepdim : bool=False,
                  interpolation : str=linear) -> Tensor

torch.nanquantile(self : Tensor,
                  q : float,
                  dim : Optional[int],
                  keepdim : bool=False,
                  interpolation : str=linear) -> Tensor

torch.nanquantile(self : Tensor,
                  q : Tensor,
                  dim : Optional[int],
                  keepdim : bool=False,
                  interpolation : str=linear,
                  out : Tensor) -> Tensor

torch.nanquantile(self : Tensor,
                  q : float,
                  dim : Optional[int],
                  keepdim : bool=False,
                  interpolation : str=linear,
                  out : Tensor) -> Tensor

torch.nansum(self : Tensor,
             dim : Optional[List[int]],
             keepdim : bool=False,
             dtype : Optional[int]) -> Tensor

torch.nansum(self : Tensor,
             dim : Optional[List[int]],
             keepdim : bool=False,
             dtype : Optional[int],
             out : Tensor) -> Tensor

torch.narrow(self : Tensor,
             dim : int,
             start : int,
             length : int) -> Tensor

torch.narrow(self : Tensor,
             dim : int,
             start : Tensor,
             length : int) -> Tensor

torch.narrow_copy(self : Tensor,
                  dim : int,
                  start : int,
                  length : int) -> Tensor

torch.narrow_copy(self : Tensor,
                  dim : int,
                  start : int,
                  length : int,
                  out : Tensor) -> Tensor

torch.native_batch_norm(input : Tensor,
                        weight : Optional[Tensor],
                        bias : Optional[Tensor],
                        running_mean : Optional[Tensor],
                        running_var : Optional[Tensor],
                        training : bool,
                        momentum : float,
                        eps : float) -> Tuple[Tensor, Tensor, Tensor]

torch.native_batch_norm(input : Tensor,
                        weight : Optional[Tensor],
                        bias : Optional[Tensor],
                        running_mean : Optional[Tensor],
                        running_var : Optional[Tensor],
                        training : bool,
                        momentum : float,
                        eps : float,
                        out : Tensor,
                        save_mean : Tensor,
                        save_invstd : Tensor) -> Tuple[Tensor, Tensor, Tensor]

torch.native_channel_shuffle(self : Tensor,
                             groups : int) -> Tensor

torch.native_dropout(input : Tensor,
                     p : float,
                     train : Optional[bool]) -> Tuple[Tensor, Tensor]

torch.native_dropout(input : Tensor,
                     p : float,
                     train : Optional[bool],
                     out0 : Tensor,
                     out1 : Tensor) -> Tuple[Tensor, Tensor]

torch.native_group_norm(input : Tensor,
                        weight : Optional[Tensor],
                        bias : Optional[Tensor],
                        N : int,
                        C : int,
                        HxW : int,
                        group : int,
                        eps : float) -> Tuple[Tensor, Tensor, Tensor]

torch.native_group_norm(input : Tensor,
                        weight : Optional[Tensor],
                        bias : Optional[Tensor],
                        N : int,
                        C : int,
                        HxW : int,
                        group : int,
                        eps : float,
                        out0 : Tensor,
                        out1 : Tensor,
                        out2 : Tensor) -> Tuple[Tensor, Tensor, Tensor]

torch.native_layer_norm(input : Tensor,
                        normalized_shape : List[int],
                        weight : Optional[Tensor],
                        bias : Optional[Tensor],
                        eps : float) -> Tuple[Tensor, Tensor, Tensor]

torch.native_layer_norm(input : Tensor,
                        normalized_shape : List[int],
                        weight : Optional[Tensor],
                        bias : Optional[Tensor],
                        eps : float,
                        out0 : Tensor,
                        out1 : Tensor,
                        out2 : Tensor) -> Tuple[Tensor, Tensor, Tensor]

torch.native_norm(self : Tensor,
                  p : number=2,
                  out : Tensor) -> Tensor

torch.native_norm(self : Tensor,
                  p : Optional[number],
                  dim : List[int],
                  keepdim : bool,
                  dtype : Optional[int],
                  out : Tensor) -> Tensor

torch.native_norm(self : Tensor,
                  p : number=2) -> Tensor

torch.native_norm(self : Tensor,
                  p : Optional[number],
                  dim : List[int],
                  keepdim : bool,
                  dtype : Optional[int]) -> Tensor

torch.ne(self : Tensor,
         other : Tensor) -> Tensor

torch.ne(self : Tensor,
         other : number) -> Tensor

torch.ne(self : Tensor,
         other : number,
         out : Tensor) -> Tensor

torch.ne(self : Tensor,
         other : Tensor,
         out : Tensor) -> Tensor

torch.ne(a : List[int],
         b : List[int]) -> bool

torch.ne(a : Device,
         b : Device) -> bool

torch.ne(a : bool,
         b : bool) -> bool

torch.ne(a : AnyEnumType,
         b : AnyEnumType) -> bool

torch.ne(a : int,
         b : int) -> bool

torch.ne(a : complex,
         b : complex) -> bool

torch.ne(a : float,
         b : float) -> bool

torch.ne(a : int,
         b : float) -> bool

torch.ne(a : float,
         b : int) -> bool

torch.ne(a : float,
         b : complex) -> bool

torch.ne(a : complex,
         b : float) -> bool

torch.ne(a : number,
         b : number) -> bool

torch.ne(a : str,
         b : str) -> bool

torch.ne(a : List[float],
         b : List[float]) -> bool

torch.ne(a : List[Tensor],
         b : List[Tensor]) -> bool

torch.ne(a : List[bool],
         b : List[bool]) -> bool

torch.ne(a : List[str],
         b : List[str]) -> bool

torch.neg(self : Tensor) -> Tensor

torch.neg(self : Tensor,
          out : Tensor) -> Tensor

torch.neg(a : int) -> int

torch.neg(a : float) -> float

torch.neg(a : complex) -> complex

torch.neg(a : number) -> number

torch.neg_(self : Tensor) -> Tensor

torch.negative(self : Tensor) -> Tensor

torch.negative(self : Tensor,
               out : Tensor) -> Tensor

torch.negative_(self : Tensor) -> Tensor

torch.nextafter(self : Tensor,
                other : Tensor) -> Tensor

torch.nextafter(self : Tensor,
                other : Tensor,
                out : Tensor) -> Tensor

torch.nonzero(self : Tensor) -> Tensor

torch.nonzero(self : Tensor,
              out : Tensor) -> Tensor

torch.nonzero_static(self : Tensor,
                     size : int,
                     fill_value : int=-1) -> Tensor

torch.nonzero_static(self : Tensor,
                     size : int,
                     fill_value : int=-1,
                     out : Tensor) -> Tensor

torch.norm_except_dim(v : Tensor,
                      pow : int=2,
                      dim : int=0) -> Tensor

torch.normal(mean : Tensor,
             std : float=1.0,
             generator : Optional[Generator]) -> Tensor

torch.normal(mean : Tensor,
             std : float=1.0,
             generator : Optional[Generator],
             out : Tensor) -> Tensor

torch.normal(mean : float,
             std : Tensor,
             generator : Optional[Generator],
             out : Tensor) -> Tensor

torch.normal(mean : float,
             std : Tensor,
             generator : Optional[Generator]) -> Tensor

torch.normal(mean : Tensor,
             std : Tensor,
             generator : Optional[Generator]) -> Tensor

torch.normal(mean : Tensor,
             std : Tensor,
             generator : Optional[Generator],
             out : Tensor) -> Tensor

torch.normal(mean : float,
             std : float,
             size : List[int],
             generator : Optional[Generator],
             dtype : Optional[int],
             layout : Optional[int],
             device : Optional[Device],
             pin_memory : Optional[bool]) -> Tensor

torch.normal(mean : float,
             std : float,
             size : List[int],
             generator : Optional[Generator],
             out : Tensor) -> Tensor

torch.normal(self : Tensor,
             mean : float=0.0,
             std : float=1.0,
             generator : Optional[Generator],
             out : Tensor) -> Tensor

torch.not_equal(self : Tensor,
                other : Tensor) -> Tensor

torch.not_equal(self : Tensor,
                other : number) -> Tensor

torch.not_equal(self : Tensor,
                other : number,
                out : Tensor) -> Tensor

torch.not_equal(self : Tensor,
                other : Tensor,
                out : Tensor) -> Tensor

torch.nuclear_norm(self : Tensor,
                   keepdim : bool=False) -> Tensor

torch.nuclear_norm(self : Tensor,
                   dim : List[int],
                   keepdim : bool=False) -> Tensor

torch.nuclear_norm(self : Tensor,
                   keepdim : bool=False,
                   out : Tensor) -> Tensor

torch.nuclear_norm(self : Tensor,
                   dim : List[int],
                   keepdim : bool=False,
                   out : Tensor) -> Tensor

torch.numel(self : Tensor) -> int

torch.ones(size : List[int],
           names : Optional[List[str]],
           dtype : Optional[int],
           layout : Optional[int],
           device : Optional[Device],
           pin_memory : Optional[bool]) -> Tensor

torch.ones(size : List[int],
           dtype : Optional[int],
           layout : Optional[int],
           device : Optional[Device],
           pin_memory : Optional[bool]) -> Tensor

torch.ones(size : List[int],
           names : Optional[List[str]],
           out : Tensor) -> Tensor

torch.ones(size : List[int],
           out : Tensor) -> Tensor

torch.ones_like(self : Tensor,
                dtype : Optional[int],
                layout : Optional[int],
                device : Optional[Device],
                pin_memory : Optional[bool],
                memory_format : Optional[int]) -> Tensor

torch.ones_like(self : Tensor,
                memory_format : Optional[int],
                out : Tensor) -> Tensor

torch.orgqr(self : Tensor,
            input2 : Tensor) -> Tensor

torch.orgqr(self : Tensor,
            input2 : Tensor,
            out : Tensor) -> Tensor

torch.ormqr(self : Tensor,
            input2 : Tensor,
            input3 : Tensor,
            left : bool=True,
            transpose : bool=False) -> Tensor

torch.ormqr(self : Tensor,
            input2 : Tensor,
            input3 : Tensor,
            left : bool=True,
            transpose : bool=False,
            out : Tensor) -> Tensor

torch.outer(self : Tensor,
            vec2 : Tensor) -> Tensor

torch.outer(self : Tensor,
            vec2 : Tensor,
            out : Tensor) -> Tensor

torch.pairwise_distance(x1 : Tensor,
                        x2 : Tensor,
                        p : float=2.0,
                        eps : float=1e-06,
                        keepdim : bool=False) -> Tensor

torch.pdist(self : Tensor,
            p : float=2.0) -> Tensor

torch.permute(self : Tensor,
              dims : List[int]) -> Tensor

torch.permute_copy(self : Tensor,
                   dims : List[int]) -> Tensor

torch.permute_copy(self : Tensor,
                   dims : List[int],
                   out : Tensor) -> Tensor

torch.pinverse(self : Tensor,
               rcond : float=1e-15) -> Tensor

torch.pixel_shuffle(self : Tensor,
                    upscale_factor : int) -> Tensor

torch.pixel_shuffle(self : Tensor,
                    upscale_factor : int,
                    out : Tensor) -> Tensor

torch.pixel_unshuffle(self : Tensor,
                      downscale_factor : int) -> Tensor

torch.pixel_unshuffle(self : Tensor,
                      downscale_factor : int,
                      out : Tensor) -> Tensor

torch.poisson(self : Tensor,
              generator : Optional[Generator]) -> Tensor

torch.poisson(self : Tensor,
              generator : Optional[Generator],
              out : Tensor) -> Tensor

torch.poisson_nll_loss(input : Tensor,
                       target : Tensor,
                       log_input : bool,
                       full : bool,
                       eps : float,
                       reduction : int) -> Tensor

torch.polar(abs : Tensor,
            angle : Tensor) -> Tensor

torch.polar(abs : Tensor,
            angle : Tensor,
            out : Tensor) -> Tensor

torch.polar(a : int,
            b : int) -> complex

torch.polar(a : float,
            b : float) -> complex

torch.polar(a : int,
            b : float) -> complex

torch.polar(a : float,
            b : int) -> complex

torch.polar(a : number,
            b : number) -> number

torch.polygamma(n : int,
                self : Tensor) -> Tensor

torch.polygamma(n : int,
                self : Tensor,
                out : Tensor) -> Tensor

torch.positive(self : Tensor) -> Tensor

torch.pow(self : Tensor,
          exponent : Tensor) -> Tensor

torch.pow(self : Tensor,
          exponent : number) -> Tensor

torch.pow(self : number,
          exponent : Tensor) -> Tensor

torch.pow(self : number,
          exponent : Tensor,
          out : Tensor) -> Tensor

torch.pow(self : Tensor,
          exponent : number,
          out : Tensor) -> Tensor

torch.pow(self : Tensor,
          exponent : Tensor,
          out : Tensor) -> Tensor

torch.pow(a : int,
          b : int) -> float

torch.pow(a : complex,
          b : complex) -> complex

torch.pow(a : float,
          b : float) -> float

torch.pow(a : int,
          b : float) -> float

torch.pow(a : float,
          b : int) -> float

torch.pow(a : float,
          b : complex) -> complex

torch.pow(a : complex,
          b : float) -> complex

torch.pow(a : number,
          b : number) -> float

torch.pow(a : int,
          b : int) -> int

torch.prelu(self : Tensor,
            weight : Tensor) -> Tensor

torch.prod(self : Tensor,
           dtype : Optional[int]) -> Tensor

torch.prod(self : Tensor,
           dim : int,
           keepdim : bool=False,
           dtype : Optional[int]) -> Tensor

torch.prod(self : Tensor,
           dim : str,
           keepdim : bool=False,
           dtype : Optional[int]) -> Tensor

torch.prod(self : Tensor,
           dim : str,
           keepdim : bool=False,
           dtype : Optional[int],
           out : Tensor) -> Tensor

torch.prod(self : Tensor,
           dim : int,
           keepdim : bool=False,
           dtype : Optional[int],
           out : Tensor) -> Tensor

torch.prod(self : Tensor,
           dtype : Optional[int],
           out : Tensor) -> Tensor

torch.promote_types(type1 : int,
                    type2 : int) -> int

torch.put(self : Tensor,
          index : Tensor,
          source : Tensor,
          accumulate : bool=False) -> Tensor

torch.put(self : Tensor,
          index : Tensor,
          source : Tensor,
          accumulate : bool=False,
          out : Tensor) -> Tensor

torch.q_per_channel_axis(self : Tensor) -> int

torch.q_per_channel_scales(self : Tensor,
                           out : Tensor) -> Tensor

torch.q_per_channel_scales(self : Tensor) -> Tensor

torch.q_per_channel_zero_points(self : Tensor,
                                out : Tensor) -> Tensor

torch.q_per_channel_zero_points(self : Tensor) -> Tensor

torch.q_scale(self : Tensor) -> float

torch.q_zero_point(self : Tensor) -> int

torch.qr(self : Tensor,
         some : bool=True) -> Tuple[Tensor, Tensor]

torch.qr(self : Tensor,
         some : bool=True,
         Q : Tensor,
         R : Tensor) -> Tuple[Tensor, Tensor]

torch.qscheme(self : Tensor) -> QScheme

torch.quantile(self : Tensor,
               q : Tensor,
               dim : Optional[int],
               keepdim : bool=False,
               interpolation : str=linear) -> Tensor

torch.quantile(self : Tensor,
               q : float,
               dim : Optional[int],
               keepdim : bool=False,
               interpolation : str=linear) -> Tensor

torch.quantile(self : Tensor,
               q : Tensor,
               dim : Optional[int],
               keepdim : bool=False,
               interpolation : str=linear,
               out : Tensor) -> Tensor

torch.quantile(self : Tensor,
               q : float,
               dim : Optional[int],
               keepdim : bool=False,
               interpolation : str=linear,
               out : Tensor) -> Tensor

torch.quantize_per_channel(self : Tensor,
                           scales : Tensor,
                           zero_points : Tensor,
                           axis : int,
                           dtype : int) -> Tensor

torch.quantize_per_channel(self : Tensor,
                           scales : Tensor,
                           zero_points : Tensor,
                           axis : int,
                           dtype : int,
                           out : Tensor) -> Tensor

torch.quantize_per_tensor(self : Tensor,
                          scale : float,
                          zero_point : int,
                          dtype : int) -> Tensor

torch.quantize_per_tensor(self : Tensor,
                          scale : Tensor,
                          zero_point : Tensor,
                          dtype : int) -> Tensor

torch.quantize_per_tensor(tensors : List[Tensor],
                          scales : Tensor,
                          zero_points : Tensor,
                          dtype : int) -> List[Tensor]

torch.quantize_per_tensor(self : Tensor,
                          scale : float,
                          zero_point : int,
                          dtype : int,
                          out : Tensor) -> Tensor

torch.quantize_per_tensor(self : Tensor,
                          scale : Tensor,
                          zero_point : Tensor,
                          dtype : int,
                          out : Tensor) -> Tensor

torch.quantize_per_tensor(tensors : List[Tensor],
                          scales : Tensor,
                          zero_points : Tensor,
                          dtype : int,
                          out : List[Tensor]) -> Tuple[]

torch.quantize_per_tensor_dynamic(self : Tensor,
                                  dtype : int,
                                  reduce_range : bool) -> Tensor

torch.quantize_per_tensor_dynamic(self : Tensor,
                                  dtype : int,
                                  reduce_range : bool,
                                  out : Tensor) -> Tensor

torch.quantized_batch_norm(input : Tensor,
                           weight : Optional[Tensor],
                           bias : Optional[Tensor],
                           mean : Tensor,
                           var : Tensor,
                           eps : float,
                           output_scale : float,
                           output_zero_point : int,
                           out : Tensor) -> Tensor

torch.quantized_batch_norm(input : Tensor,
                           weight : Optional[Tensor],
                           bias : Optional[Tensor],
                           mean : Tensor,
                           var : Tensor,
                           eps : float,
                           output_scale : float,
                           output_zero_point : int) -> Tensor

torch.quantized_gru_cell(input : Tensor,
                         hx : Tensor,
                         w_ih : Tensor,
                         w_hh : Tensor,
                         b_ih : Tensor,
                         b_hh : Tensor,
                         packed_ih : Tensor,
                         packed_hh : Tensor,
                         col_offsets_ih : Tensor,
                         col_offsets_hh : Tensor,
                         scale_ih : number,
                         scale_hh : number,
                         zero_point_ih : number,
                         zero_point_hh : number) -> Tensor

torch.quantized_lstm_cell(input : Tensor,
                          hx : List[Tensor],
                          w_ih : Tensor,
                          w_hh : Tensor,
                          b_ih : Tensor,
                          b_hh : Tensor,
                          packed_ih : Tensor,
                          packed_hh : Tensor,
                          col_offsets_ih : Tensor,
                          col_offsets_hh : Tensor,
                          scale_ih : number,
                          scale_hh : number,
                          zero_point_ih : number,
                          zero_point_hh : number) -> Tuple[Tensor, Tensor]

torch.quantized_max_pool1d(self : Tensor,
                           kernel_size : List[int],
                           stride : List[int]=[],
                           padding : List[int]=[0],
                           dilation : List[int]=[1],
                           ceil_mode : bool=False,
                           out : Tensor) -> Tensor

torch.quantized_max_pool1d(self : Tensor,
                           kernel_size : List[int],
                           stride : List[int]=[],
                           padding : List[int]=[0],
                           dilation : List[int]=[1],
                           ceil_mode : bool=False) -> Tensor

torch.quantized_max_pool2d(self : Tensor,
                           kernel_size : List[int],
                           stride : List[int]=[],
                           padding : List[int]=[0, 0],
                           dilation : List[int]=[1, 1],
                           ceil_mode : bool=False,
                           out : Tensor) -> Tensor

torch.quantized_max_pool2d(self : Tensor,
                           kernel_size : List[int],
                           stride : List[int]=[],
                           padding : List[int]=[0, 0],
                           dilation : List[int]=[1, 1],
                           ceil_mode : bool=False) -> Tensor

torch.quantized_max_pool3d(self : Tensor,
                           kernel_size : List[int],
                           stride : List[int]=[],
                           padding : List[int]=[0, 0, 0],
                           dilation : List[int]=[1, 1, 1],
                           ceil_mode : bool=False,
                           out : Tensor) -> Tensor

torch.quantized_max_pool3d(self : Tensor,
                           kernel_size : List[int],
                           stride : List[int]=[],
                           padding : List[int]=[0, 0, 0],
                           dilation : List[int]=[1, 1, 1],
                           ceil_mode : bool=False) -> Tensor

torch.quantized_rnn_relu_cell(input : Tensor,
                              hx : Tensor,
                              w_ih : Tensor,
                              w_hh : Tensor,
                              b_ih : Tensor,
                              b_hh : Tensor,
                              packed_ih : Tensor,
                              packed_hh : Tensor,
                              col_offsets_ih : Tensor,
                              col_offsets_hh : Tensor,
                              scale_ih : number,
                              scale_hh : number,
                              zero_point_ih : number,
                              zero_point_hh : number) -> Tensor

torch.quantized_rnn_tanh_cell(input : Tensor,
                              hx : Tensor,
                              w_ih : Tensor,
                              w_hh : Tensor,
                              b_ih : Tensor,
                              b_hh : Tensor,
                              packed_ih : Tensor,
                              packed_hh : Tensor,
                              col_offsets_ih : Tensor,
                              col_offsets_hh : Tensor,
                              scale_ih : number,
                              scale_hh : number,
                              zero_point_ih : number,
                              zero_point_hh : number) -> Tensor

torch.rad2deg(self : Tensor) -> Tensor

torch.rad2deg(self : Tensor,
              out : Tensor) -> Tensor

torch.rad2deg_(self : Tensor) -> Tensor

torch.rand(size : List[int],
           dtype : Optional[int],
           layout : Optional[int],
           device : Optional[Device],
           pin_memory : Optional[bool]) -> Tensor

torch.rand(size : List[int],
           generator : Optional[Generator],
           dtype : Optional[int],
           layout : Optional[int],
           device : Optional[Device],
           pin_memory : Optional[bool]) -> Tensor

torch.rand(size : List[int],
           names : Optional[List[str]],
           dtype : Optional[int],
           layout : Optional[int],
           device : Optional[Device],
           pin_memory : Optional[bool]) -> Tensor

torch.rand(size : List[int],
           generator : Optional[Generator],
           names : Optional[List[str]],
           dtype : Optional[int],
           layout : Optional[int],
           device : Optional[Device],
           pin_memory : Optional[bool]) -> Tensor

torch.rand(size : List[int],
           out : Tensor) -> Tensor

torch.rand(size : List[int],
           generator : Optional[Generator],
           out : Tensor) -> Tensor

torch.rand(size : List[int],
           names : Optional[List[str]],
           out : Tensor) -> Tensor

torch.rand(size : List[int],
           generator : Optional[Generator],
           names : Optional[List[str]],
           out : Tensor) -> Tensor

torch.rand_like(self : Tensor,
                dtype : Optional[int],
                layout : Optional[int],
                device : Optional[Device],
                pin_memory : Optional[bool],
                memory_format : Optional[int]) -> Tensor

torch.rand_like(self : Tensor,
                memory_format : Optional[int],
                out : Tensor) -> Tensor

torch.randint(high : int,
              size : List[int],
              dtype : Optional[int]=4,
              layout : Optional[int],
              device : Optional[Device],
              pin_memory : Optional[bool]) -> Tensor

torch.randint(high : int,
              size : List[int],
              generator : Optional[Generator],
              dtype : Optional[int]=4,
              layout : Optional[int],
              device : Optional[Device],
              pin_memory : Optional[bool]) -> Tensor

torch.randint(low : int,
              high : int,
              size : List[int],
              dtype : Optional[int]=4,
              layout : Optional[int],
              device : Optional[Device],
              pin_memory : Optional[bool]) -> Tensor

torch.randint(low : int,
              high : int,
              size : List[int],
              generator : Optional[Generator],
              dtype : Optional[int]=4,
              layout : Optional[int],
              device : Optional[Device],
              pin_memory : Optional[bool]) -> Tensor

torch.randint(high : int,
              size : List[int],
              out : Tensor) -> Tensor

torch.randint(high : int,
              size : List[int],
              generator : Optional[Generator],
              out : Tensor) -> Tensor

torch.randint(low : int,
              high : int,
              size : List[int],
              out : Tensor) -> Tensor

torch.randint(low : int,
              high : int,
              size : List[int],
              generator : Optional[Generator],
              out : Tensor) -> Tensor

torch.randint_like(self : Tensor,
                   high : int,
                   dtype : Optional[int],
                   layout : Optional[int],
                   device : Optional[Device],
                   pin_memory : Optional[bool],
                   memory_format : Optional[int]) -> Tensor

torch.randint_like(self : Tensor,
                   low : int,
                   high : int,
                   dtype : Optional[int],
                   layout : Optional[int],
                   device : Optional[Device],
                   pin_memory : Optional[bool],
                   memory_format : Optional[int]) -> Tensor

torch.randint_like(self : Tensor,
                   high : int,
                   memory_format : Optional[int],
                   out : Tensor) -> Tensor

torch.randint_like(self : Tensor,
                   low : int,
                   high : int,
                   memory_format : Optional[int],
                   out : Tensor) -> Tensor

torch.randn(size : List[int],
            dtype : Optional[int],
            layout : Optional[int],
            device : Optional[Device],
            pin_memory : Optional[bool]) -> Tensor

torch.randn(size : List[int],
            generator : Optional[Generator],
            dtype : Optional[int],
            layout : Optional[int],
            device : Optional[Device],
            pin_memory : Optional[bool]) -> Tensor

torch.randn(size : List[int],
            names : Optional[List[str]],
            dtype : Optional[int],
            layout : Optional[int],
            device : Optional[Device],
            pin_memory : Optional[bool]) -> Tensor

torch.randn(size : List[int],
            generator : Optional[Generator],
            names : Optional[List[str]],
            dtype : Optional[int],
            layout : Optional[int],
            device : Optional[Device],
            pin_memory : Optional[bool]) -> Tensor

torch.randn(size : List[int],
            out : Tensor) -> Tensor

torch.randn(size : List[int],
            generator : Optional[Generator],
            out : Tensor) -> Tensor

torch.randn(size : List[int],
            names : Optional[List[str]],
            out : Tensor) -> Tensor

torch.randn(size : List[int],
            generator : Optional[Generator],
            names : Optional[List[str]],
            out : Tensor) -> Tensor

torch.randn_like(self : Tensor,
                 dtype : Optional[int],
                 layout : Optional[int],
                 device : Optional[Device],
                 pin_memory : Optional[bool],
                 memory_format : Optional[int]) -> Tensor

torch.randn_like(self : Tensor,
                 memory_format : Optional[int],
                 out : Tensor) -> Tensor

torch.randperm(n : int,
               dtype : Optional[int]=4,
               layout : Optional[int],
               device : Optional[Device],
               pin_memory : Optional[bool]) -> Tensor

torch.randperm(n : int,
               generator : Optional[Generator],
               dtype : Optional[int]=4,
               layout : Optional[int],
               device : Optional[Device],
               pin_memory : Optional[bool]) -> Tensor

torch.randperm(n : int,
               out : Tensor) -> Tensor

torch.randperm(n : int,
               generator : Optional[Generator],
               out : Tensor) -> Tensor

torch.range(start : number,
            end : number,
            step : number=1,
            dtype : Optional[int],
            layout : Optional[int],
            device : Optional[Device],
            pin_memory : Optional[bool]) -> Tensor

torch.range(start : number,
            end : number,
            dtype : Optional[int],
            layout : Optional[int],
            device : Optional[Device],
            pin_memory : Optional[bool]) -> Tensor

torch.range(start : number,
            end : number,
            step : number=1,
            out : Tensor) -> Tensor

torch.range(start : number,
            end : number,
            out : Tensor) -> Tensor

torch.ravel(self : Tensor) -> Tensor

torch.real(self : Tensor) -> Tensor

torch.reciprocal(self : Tensor) -> Tensor

torch.reciprocal(self : Tensor,
                 out : Tensor) -> Tensor

torch.reciprocal_(self : Tensor) -> Tensor

torch.relu(self : Tensor) -> Tensor

torch.relu(self : Tensor,
           out : Tensor) -> Tensor

torch.relu_(self : Tensor) -> Tensor

torch.remainder(self : Tensor,
                other : Tensor) -> Tensor

torch.remainder(self : Tensor,
                other : number) -> Tensor

torch.remainder(self : number,
                other : Tensor) -> Tensor

torch.remainder(self : Tensor,
                other : Tensor,
                out : Tensor) -> Tensor

torch.remainder(self : Tensor,
                other : number,
                out : Tensor) -> Tensor

torch.remainder(self : number,
                other : Tensor,
                out : Tensor) -> Tensor

torch.remainder(a : int,
                b : int) -> int

torch.remainder(a : float,
                b : float) -> float

torch.remainder(a : int,
                b : float) -> float

torch.remainder(a : float,
                b : int) -> float

torch.remainder(a : number,
                b : number) -> number

torch.renorm(self : Tensor,
             p : number,
             dim : int,
             maxnorm : number) -> Tensor

torch.renorm(self : Tensor,
             p : number,
             dim : int,
             maxnorm : number,
             out : Tensor) -> Tensor

torch.repeat_interleave(repeats : Tensor,
                        output_size : Optional[int]) -> Tensor

torch.repeat_interleave(self : Tensor,
                        repeats : Tensor,
                        dim : Optional[int],
                        output_size : Optional[int]) -> Tensor

torch.repeat_interleave(self : Tensor,
                        repeats : int,
                        dim : Optional[int],
                        output_size : Optional[int]) -> Tensor

torch.repeat_interleave(repeats : Tensor,
                        output_size : Optional[int],
                        out : Tensor) -> Tensor

torch.reshape(self : Tensor,
              shape : List[int]) -> Tensor

torch.resize_as_(self : Tensor,
                 the_template : Tensor,
                 memory_format : Optional[int]) -> Tensor

torch.resize_as_sparse_(self : Tensor,
                        the_template : Tensor) -> Tensor

torch.resolve_conj(self : Tensor) -> Tensor

torch.resolve_neg(self : Tensor) -> Tensor

torch.result_type(tensor : Tensor,
                  other : Tensor) -> int

torch.result_type(tensor : Tensor,
                  other : number) -> int

torch.result_type(scalar : number,
                  tensor : Tensor) -> int

torch.result_type(scalar1 : number,
                  scalar2 : number) -> int

torch.rms_norm(input : Tensor,
               normalized_shape : List[int],
               weight : Optional[Tensor],
               eps : Optional[float]) -> Tensor

torch.rnn_relu(input : Tensor,
               hx : Tensor,
               params : List[Tensor],
               has_biases : bool,
               num_layers : int,
               dropout : float,
               train : bool,
               bidirectional : bool,
               batch_first : bool) -> Tuple[Tensor, Tensor]

torch.rnn_relu(data : Tensor,
               batch_sizes : Tensor,
               hx : Tensor,
               params : List[Tensor],
               has_biases : bool,
               num_layers : int,
               dropout : float,
               train : bool,
               bidirectional : bool) -> Tuple[Tensor, Tensor]

torch.rnn_relu_cell(input : Tensor,
                    hx : Tensor,
                    w_ih : Tensor,
                    w_hh : Tensor,
                    b_ih : Optional[Tensor],
                    b_hh : Optional[Tensor]) -> Tensor

torch.rnn_tanh(input : Tensor,
               hx : Tensor,
               params : List[Tensor],
               has_biases : bool,
               num_layers : int,
               dropout : float,
               train : bool,
               bidirectional : bool,
               batch_first : bool) -> Tuple[Tensor, Tensor]

torch.rnn_tanh(data : Tensor,
               batch_sizes : Tensor,
               hx : Tensor,
               params : List[Tensor],
               has_biases : bool,
               num_layers : int,
               dropout : float,
               train : bool,
               bidirectional : bool) -> Tuple[Tensor, Tensor]

torch.rnn_tanh_cell(input : Tensor,
                    hx : Tensor,
                    w_ih : Tensor,
                    w_hh : Tensor,
                    b_ih : Optional[Tensor],
                    b_hh : Optional[Tensor]) -> Tensor

torch.roll(self : Tensor,
           shifts : List[int],
           dims : List[int]=[]) -> Tensor

torch.roll(self : Tensor,
           shifts : List[int],
           dims : List[int]=[],
           out : Tensor) -> Tensor

torch.rot90(self : Tensor,
            k : int=1,
            dims : List[int]=[0, 1]) -> Tensor

torch.rot90(self : Tensor,
            k : int=1,
            dims : List[int]=[0, 1],
            out : Tensor) -> Tensor

torch.round(self : Tensor) -> Tensor

torch.round(self : Tensor,
            decimals : int) -> Tensor

torch.round(self : Tensor,
            out : Tensor) -> Tensor

torch.round(self : Tensor,
            decimals : int,
            out : Tensor) -> Tensor

torch.round(a : int) -> float

torch.round(a : float) -> float

torch.round(a : number) -> number

torch.round_(self : Tensor) -> Tensor

torch.round_(self : Tensor,
             decimals : int) -> Tensor

torch.row_indices_copy(self : Tensor) -> Tensor

torch.row_indices_copy(self : Tensor,
                       out : Tensor) -> Tensor

torch.row_stack(tensors : List[Tensor]) -> Tensor

torch.row_stack(tensors : List[Tensor],
                out : Tensor) -> Tensor

torch.rrelu(self : Tensor,
            lower : number=0.125,
            upper : number=0.3333333333333333,
            training : bool=False,
            generator : Optional[Generator]) -> Tensor

torch.rrelu_(self : Tensor,
             lower : number=0.125,
             upper : number=0.3333333333333333,
             training : bool=False,
             generator : Optional[Generator]) -> Tensor

torch.rsqrt(self : Tensor) -> Tensor

torch.rsqrt(self : Tensor,
            out : Tensor) -> Tensor

torch.rsqrt_(self : Tensor) -> Tensor

torch.rsub(self : Tensor,
           other : Tensor,
           alpha : number=1) -> Tensor

torch.rsub(self : Tensor,
           other : number,
           alpha : number=1) -> Tensor

torch.rsub(self : Tensor,
           other : Tensor,
           alpha : number=1,
           out : Tensor) -> Tensor

torch.rsub(self : Tensor,
           other : number,
           alpha : number=1,
           out : Tensor) -> Tensor

torch.save(item : t,
           filename : str) -> Tuple[]

torch.scalar_tensor(s : number,
                    dtype : Optional[int],
                    layout : Optional[int],
                    device : Optional[Device],
                    pin_memory : Optional[bool]) -> Tensor

torch.scalar_tensor(s : number,
                    out : Tensor) -> Tensor

torch.scatter(self : Tensor,
              dim : int,
              index : Tensor,
              value : number) -> Tensor

torch.scatter(self : Tensor,
              dim : int,
              index : Tensor,
              src : Tensor) -> Tensor

torch.scatter(self : Tensor,
              dim : int,
              index : Tensor,
              src : Tensor,
              reduce : str) -> Tensor

torch.scatter(self : Tensor,
              dim : int,
              index : Tensor,
              value : number,
              reduce : str) -> Tensor

torch.scatter(self : Tensor,
              dim : int,
              index : Tensor,
              src : Tensor,
              out : Tensor) -> Tensor

torch.scatter(self : Tensor,
              dim : int,
              index : Tensor,
              value : number,
              out : Tensor) -> Tensor

torch.scatter(self : Tensor,
              dim : int,
              index : Tensor,
              src : Tensor,
              reduce : str,
              out : Tensor) -> Tensor

torch.scatter(self : Tensor,
              dim : int,
              index : Tensor,
              value : number,
              reduce : str,
              out : Tensor) -> Tensor

torch.scatter(self : Tensor,
              dim : str,
              index : Tensor,
              src : Tensor) -> Tensor

torch.scatter(self : Tensor,
              dim : str,
              index : Tensor,
              value : number) -> Tensor

torch.scatter_add(self : Tensor,
                  dim : int,
                  index : Tensor,
                  src : Tensor) -> Tensor

torch.scatter_add(self : Tensor,
                  dim : int,
                  index : Tensor,
                  src : Tensor,
                  out : Tensor) -> Tensor

torch.scatter_add(self : Tensor,
                  dim : str,
                  index : Tensor,
                  src : Tensor) -> Tensor

torch.scatter_reduce(self : Tensor,
                     dim : int,
                     index : Tensor,
                     src : Tensor,
                     reduce : str,
                     include_self : bool=True) -> Tensor

torch.scatter_reduce(self : Tensor,
                     dim : int,
                     index : Tensor,
                     src : Tensor,
                     reduce : str,
                     include_self : bool=True,
                     out : Tensor) -> Tensor

torch.searchsorted(sorted_sequence : Tensor,
                   self : Tensor,
                   out_int32 : bool=False,
                   right : bool=False,
                   side : Optional[str],
                   sorter : Optional[Tensor]) -> Tensor

torch.searchsorted(sorted_sequence : Tensor,
                   self : Tensor,
                   out_int32 : bool=False,
                   right : bool=False,
                   side : Optional[str],
                   sorter : Optional[Tensor],
                   out : Tensor) -> Tensor

torch.searchsorted(sorted_sequence : Tensor,
                   self : number,
                   out_int32 : bool=False,
                   right : bool=False,
                   side : Optional[str],
                   sorter : Optional[Tensor]) -> Tensor

torch.searchsorted(sorted_sequence : Tensor,
                   self : number,
                   out_int32 : bool=False,
                   right : bool=False,
                   side : Optional[str],
                   sorter : Optional[Tensor],
                   out : Tensor) -> Tensor

torch.seed(self : Generator) -> int

torch.segment_reduce(data : Tensor,
                     reduce : str,
                     lengths : Optional[Tensor],
                     indices : Optional[Tensor],
                     offsets : Optional[Tensor],
                     axis : int=0,
                     unsafe : bool=False,
                     initial : Optional[number]) -> Tensor

torch.segment_reduce(data : Tensor,
                     reduce : str,
                     lengths : Optional[Tensor],
                     indices : Optional[Tensor],
                     offsets : Optional[Tensor],
                     axis : int=0,
                     unsafe : bool=False,
                     initial : Optional[number],
                     out : Tensor) -> Tensor

torch.select(self : Tensor,
             dim : str,
             index : int) -> Tensor

torch.select(self : Tensor,
             dim : int,
             index : int) -> Tensor

torch.select(list : List[t],
             idx : int) -> t

torch.select_copy(self : Tensor,
                  dim : int,
                  index : int) -> Tensor

torch.select_copy(self : Tensor,
                  dim : int,
                  index : int,
                  out : Tensor) -> Tensor

torch.select_scatter(self : Tensor,
                     src : Tensor,
                     dim : int,
                     index : int) -> Tensor

torch.select_scatter(self : Tensor,
                     src : Tensor,
                     dim : int,
                     index : int,
                     out : Tensor) -> Tensor

torch.selu(self : Tensor) -> Tensor

torch.selu_(self : Tensor) -> Tensor

torch.set_grad_enabled(val : bool) -> Tuple[]

torch.sgn(self : Tensor) -> Tensor

torch.sgn(self : Tensor,
          out : Tensor) -> Tensor

torch.sigmoid(self : Tensor) -> Tensor

torch.sigmoid(self : Tensor,
              out : Tensor) -> Tensor

torch.sigmoid_(self : Tensor) -> Tensor

torch.sign(self : Tensor) -> Tensor

torch.sign(self : Tensor,
           out : Tensor) -> Tensor

torch.signbit(self : Tensor) -> Tensor

torch.signbit(self : Tensor,
              out : Tensor) -> Tensor

torch.sin(self : Tensor) -> Tensor

torch.sin(self : Tensor,
          out : Tensor) -> Tensor

torch.sin(a : int) -> float

torch.sin(a : float) -> float

torch.sin(a : complex) -> complex

torch.sin(a : number) -> number

torch.sin_(self : Tensor) -> Tensor

torch.sinc(self : Tensor) -> Tensor

torch.sinc(self : Tensor,
           out : Tensor) -> Tensor

torch.sinc_(self : Tensor) -> Tensor

torch.sinh(self : Tensor) -> Tensor

torch.sinh(self : Tensor,
           out : Tensor) -> Tensor

torch.sinh(a : int) -> float

torch.sinh(a : float) -> float

torch.sinh(a : complex) -> complex

torch.sinh(a : number) -> number

torch.sinh_(self : Tensor) -> Tensor

torch.slice_copy(self : Tensor,
                 dim : int=0,
                 start : Optional[int],
                 end : Optional[int],
                 step : int=1) -> Tensor

torch.slice_copy(self : Tensor,
                 dim : int=0,
                 start : Optional[int],
                 end : Optional[int],
                 step : int=1,
                 out : Tensor) -> Tensor

torch.slice_inverse(self : Tensor,
                    src : Tensor,
                    dim : int=0,
                    start : Optional[int],
                    end : Optional[int],
                    step : int=1) -> Tensor

torch.slice_scatter(self : Tensor,
                    src : Tensor,
                    dim : int=0,
                    start : Optional[int],
                    end : Optional[int],
                    step : int=1) -> Tensor

torch.slice_scatter(self : Tensor,
                    src : Tensor,
                    dim : int=0,
                    start : Optional[int],
                    end : Optional[int],
                    step : int=1,
                    out : Tensor) -> Tensor

torch.slogdet(self : Tensor) -> Tuple[Tensor, Tensor]

torch.slogdet(self : Tensor,
              sign : Tensor,
              logabsdet : Tensor) -> Tuple[Tensor, Tensor]

torch.smm(self : Tensor,
          mat2 : Tensor) -> Tensor

torch.softmax(self : Tensor,
              dim : int,
              dtype : Optional[int]) -> Tensor

torch.softmax(self : Tensor,
              dim : str,
              dtype : Optional[int]) -> Tensor

torch.softmax(self : Tensor,
              dim : int,
              dtype : Optional[int],
              out : Tensor) -> Tensor

torch.sort(self : Tensor,
           dim : int=-1,
           descending : bool=False) -> Tuple[Tensor, Tensor]

torch.sort(self : Tensor,
           stable : Optional[bool],
           dim : int=-1,
           descending : bool=False) -> Tuple[Tensor, Tensor]

torch.sort(self : Tensor,
           stable : Optional[bool],
           dim : int=-1,
           descending : bool=False,
           values : Tensor,
           indices : Tensor) -> Tuple[Tensor, Tensor]

torch.sort(self : Tensor,
           dim : int=-1,
           descending : bool=False,
           values : Tensor,
           indices : Tensor) -> Tuple[Tensor, Tensor]

torch.sort(self : Tensor,
           dim : str,
           descending : bool=False) -> Tuple[Tensor, Tensor]

torch.sort(self : Tensor,
           dim : str,
           descending : bool=False,
           values : Tensor,
           indices : Tensor) -> Tuple[Tensor, Tensor]

torch.sort(self : Tensor,
           stable : Optional[bool],
           dim : str,
           descending : bool=False) -> Tuple[Tensor, Tensor]

torch.sort(self : Tensor,
           stable : Optional[bool],
           dim : str,
           descending : bool=False,
           values : Tensor,
           indices : Tensor) -> Tuple[Tensor, Tensor]

torch.sort(self : List[int],
           reverse : bool=False) -> Tuple[]

torch.sort(self : List[float],
           reverse : bool=False) -> Tuple[]

torch.sort(self : List[Tensor],
           reverse : bool=False) -> Tuple[]

torch.sort(self : List[bool],
           reverse : bool=False) -> Tuple[]

torch.sort(self : List[str],
           reverse : bool=False) -> Tuple[]

torch.sort(self : List[t],
           reverse : bool=False) -> Tuple[]

torch.sparse_bsc_tensor(ccol_indices : Tensor,
                        row_indices : Tensor,
                        values : Tensor,
                        size : List[int],
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool]=False) -> Tensor

torch.sparse_bsc_tensor(ccol_indices : Tensor,
                        row_indices : Tensor,
                        values : Tensor,
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool]=False) -> Tensor

torch.sparse_bsr_tensor(crow_indices : Tensor,
                        col_indices : Tensor,
                        values : Tensor,
                        size : List[int],
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool]=False) -> Tensor

torch.sparse_bsr_tensor(crow_indices : Tensor,
                        col_indices : Tensor,
                        values : Tensor,
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool]=False) -> Tensor

torch.sparse_compressed_tensor(compressed_indices : Tensor,
                               plain_indices : Tensor,
                               values : Tensor,
                               size : List[int],
                               dtype : Optional[int],
                               layout : Optional[int],
                               device : Optional[Device],
                               pin_memory : Optional[bool]=False) -> Tensor

torch.sparse_compressed_tensor(compressed_indices : Tensor,
                               plain_indices : Tensor,
                               values : Tensor,
                               dtype : Optional[int],
                               layout : Optional[int],
                               device : Optional[Device],
                               pin_memory : Optional[bool]=False) -> Tensor

torch.sparse_coo_tensor(size : List[int],
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool]=False) -> Tensor

torch.sparse_coo_tensor(indices : Tensor,
                        values : Tensor,
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool],
                        is_coalesced : Optional[bool]) -> Tensor

torch.sparse_coo_tensor(indices : Tensor,
                        values : Tensor,
                        size : List[int],
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool],
                        is_coalesced : Optional[bool]) -> Tensor

torch.sparse_coo_tensor(size : List[int],
                        out : Tensor) -> Tensor

torch.sparse_csc_tensor(ccol_indices : Tensor,
                        row_indices : Tensor,
                        values : Tensor,
                        size : List[int],
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool]=False) -> Tensor

torch.sparse_csc_tensor(ccol_indices : Tensor,
                        row_indices : Tensor,
                        values : Tensor,
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool]=False) -> Tensor

torch.sparse_csr_tensor(crow_indices : Tensor,
                        col_indices : Tensor,
                        values : Tensor,
                        size : List[int],
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool]=False) -> Tensor

torch.sparse_csr_tensor(crow_indices : Tensor,
                        col_indices : Tensor,
                        values : Tensor,
                        dtype : Optional[int],
                        layout : Optional[int],
                        device : Optional[Device],
                        pin_memory : Optional[bool]=False) -> Tensor

torch.split(self : Tensor,
            split_size : int,
            dim : int=0) -> List[Tensor]

torch.split(self : Tensor,
            split_size : List[int],
            dim : int=0) -> List[Tensor]

torch.split(self : str,
            separator : Optional[str],
            max : int=-1) -> List[str]

torch.split(self : Tensor,
            split_sizes : List[int],
            dim : int=0) -> List[Tensor]

torch.split_copy(self : Tensor,
                 split_size : int,
                 dim : int=0) -> List[Tensor]

torch.split_copy(self : Tensor,
                 split_size : int,
                 dim : int=0,
                 out : List[Tensor]) -> Tuple[]

torch.split_with_sizes(self : Tensor,
                       split_sizes : List[int],
                       dim : int=0) -> List[Tensor]

torch.split_with_sizes_copy(self : Tensor,
                            split_sizes : List[int],
                            dim : int=0) -> List[Tensor]

torch.split_with_sizes_copy(self : Tensor,
                            split_sizes : List[int],
                            dim : int=0,
                            out : List[Tensor]) -> Tuple[]

torch.sqrt(self : Tensor) -> Tensor

torch.sqrt(self : Tensor,
           out : Tensor) -> Tensor

torch.sqrt(a : int) -> float

torch.sqrt(a : float) -> float

torch.sqrt(a : complex) -> complex

torch.sqrt(a : number) -> number

torch.sqrt_(self : Tensor) -> Tensor

torch.square(self : Tensor) -> Tensor

torch.square(self : Tensor,
             out : Tensor) -> Tensor

torch.square_(self : Tensor) -> Tensor

torch.squeeze(self : Tensor) -> Tensor

torch.squeeze(self : Tensor,
              dim : int) -> Tensor

torch.squeeze(self : Tensor,
              dim : List[int]) -> Tensor

torch.squeeze(self : Tensor,
              dim : str) -> Tensor

torch.squeeze_copy(self : Tensor) -> Tensor

torch.squeeze_copy(self : Tensor,
                   dim : int) -> Tensor

torch.squeeze_copy(self : Tensor,
                   dim : List[int]) -> Tensor

torch.squeeze_copy(self : Tensor,
                   out : Tensor) -> Tensor

torch.squeeze_copy(self : Tensor,
                   dim : int,
                   out : Tensor) -> Tensor

torch.squeeze_copy(self : Tensor,
                   dim : List[int],
                   out : Tensor) -> Tensor

torch.sspaddmm(self : Tensor,
               mat1 : Tensor,
               mat2 : Tensor,
               beta : number=1,
               alpha : number=1,
               out : Tensor) -> Tensor

torch.sspaddmm(self : Tensor,
               mat1 : Tensor,
               mat2 : Tensor,
               beta : number=1,
               alpha : number=1) -> Tensor

torch.stack(tensors : List[Tensor],
            dim : int=0) -> Tensor

torch.stack(tensors : List[Tensor],
            dim : int=0,
            out : Tensor) -> Tensor

torch.std(self : Tensor,
          unbiased : bool=True) -> Tensor

torch.std(self : Tensor,
          dim : Optional[List[int]],
          unbiased : bool=True,
          keepdim : bool=False) -> Tensor

torch.std(self : Tensor,
          dim : Optional[List[int]],
          correction : Optional[number],
          keepdim : bool=False) -> Tensor

torch.std(self : Tensor,
          dim : List[str],
          unbiased : bool=True,
          keepdim : bool=False) -> Tensor

torch.std(self : Tensor,
          dim : List[str],
          unbiased : bool=True,
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.std(self : Tensor,
          dim : Optional[List[int]],
          unbiased : bool=True,
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.std(self : Tensor,
          dim : Optional[List[int]],
          correction : Optional[number],
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.std(self : Tensor,
          dim : List[str],
          correction : Optional[number],
          keepdim : bool=False) -> Tensor

torch.std(self : Tensor,
          dim : List[str],
          correction : Optional[number],
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.std_mean(self : Tensor,
               unbiased : bool=True) -> Tuple[Tensor, Tensor]

torch.std_mean(self : Tensor,
               dim : Optional[List[int]],
               unbiased : bool=True,
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.std_mean(self : Tensor,
               dim : Optional[List[int]],
               correction : Optional[number],
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.std_mean(self : Tensor,
               dim : List[str],
               unbiased : bool=True,
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.std_mean(self : Tensor,
               dim : List[str],
               correction : Optional[number],
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.std_mean(self : Tensor,
               dim : Optional[List[int]],
               correction : Optional[number],
               keepdim : bool=False,
               out0 : Tensor,
               out1 : Tensor) -> Tuple[Tensor, Tensor]

torch.sub(self : Tensor,
          other : Tensor,
          alpha : number=1) -> Tensor

torch.sub(self : Tensor,
          other : number,
          alpha : number=1) -> Tensor

torch.sub(self : Tensor,
          other : Tensor,
          alpha : number=1,
          out : Tensor) -> Tensor

torch.sub(self : Tensor,
          other : number,
          alpha : number=1,
          out : Tensor) -> Tensor

torch.sub(a : int,
          b : int) -> int

torch.sub(a : complex,
          b : complex) -> complex

torch.sub(a : float,
          b : float) -> float

torch.sub(a : int,
          b : complex) -> complex

torch.sub(a : complex,
          b : int) -> complex

torch.sub(a : float,
          b : complex) -> complex

torch.sub(a : complex,
          b : float) -> complex

torch.sub(a : int,
          b : float) -> float

torch.sub(a : float,
          b : int) -> float

torch.sub(a : number,
          b : number) -> number

torch.subtract(self : Tensor,
               other : Tensor,
               alpha : number=1) -> Tensor

torch.subtract(self : Tensor,
               other : Tensor,
               alpha : number=1,
               out : Tensor) -> Tensor

torch.subtract(self : Tensor,
               other : number,
               alpha : number=1) -> Tensor

torch.sum(self : Tensor,
          dim : Optional[List[int]],
          keepdim : bool=False,
          dtype : Optional[int]) -> Tensor

torch.sum(self : Tensor,
          dtype : Optional[int]) -> Tensor

torch.sum(self : Tensor,
          dim : List[str],
          keepdim : bool=False,
          dtype : Optional[int]) -> Tensor

torch.sum(self : Tensor,
          dim : List[str],
          keepdim : bool=False,
          dtype : Optional[int],
          out : Tensor) -> Tensor

torch.sum(self : Tensor,
          dim : Optional[List[int]],
          keepdim : bool=False,
          dtype : Optional[int],
          out : Tensor) -> Tensor

torch.sum(self : Tensor,
          dtype : Optional[int],
          out : Tensor) -> Tensor

torch.sum(self : List[int]) -> int

torch.sum(self : List[float]) -> float

torch.sum(self : List[complex]) -> complex

torch.sum(self : List[bool]) -> int

torch.svd(self : Tensor,
          some : bool=True,
          compute_uv : bool=True) -> Tuple[Tensor, Tensor, Tensor]

torch.svd(self : Tensor,
          some : bool=True,
          compute_uv : bool=True,
          U : Tensor,
          S : Tensor,
          V : Tensor) -> Tuple[Tensor, Tensor, Tensor]

torch.swapaxes(self : Tensor,
               axis0 : int,
               axis1 : int) -> Tensor

torch.swapdims(self : Tensor,
               dim0 : int,
               dim1 : int) -> Tensor

torch.sym_constrain_range(size : number,
                          min : Optional[int],
                          max : Optional[int]) -> Tuple[]

torch.sym_constrain_range_for_size(size : number,
                                   min : Optional[int],
                                   max : Optional[int]) -> Tuple[]

torch.t(self : Tensor) -> Tensor

torch.t_copy(self : Tensor) -> Tensor

torch.t_copy(self : Tensor,
             out : Tensor) -> Tensor

torch.take(self : Tensor,
           index : Tensor) -> Tensor

torch.take(self : Tensor,
           index : Tensor,
           out : Tensor) -> Tensor

torch.take_along_dim(self : Tensor,
                     indices : Tensor,
                     dim : Optional[int]) -> Tensor

torch.take_along_dim(self : Tensor,
                     indices : Tensor,
                     dim : Optional[int],
                     out : Tensor) -> Tensor

torch.tan(self : Tensor) -> Tensor

torch.tan(self : Tensor,
          out : Tensor) -> Tensor

torch.tan(a : int) -> float

torch.tan(a : float) -> float

torch.tan(a : complex) -> complex

torch.tan(a : number) -> number

torch.tan_(self : Tensor) -> Tensor

torch.tanh(self : Tensor) -> Tensor

torch.tanh(self : Tensor,
           out : Tensor) -> Tensor

torch.tanh(a : int) -> float

torch.tanh(a : float) -> float

torch.tanh(a : complex) -> complex

torch.tanh(a : number) -> number

torch.tanh_(self : Tensor) -> Tensor

torch.tensor(t : bool,
             dtype : Optional[int],
             device : Optional[Device],
             requires_grad : bool=False) -> Tensor

torch.tensor(t : float,
             dtype : Optional[int],
             device : Optional[Device],
             requires_grad : bool=False) -> Tensor

torch.tensor(t : int,
             dtype : Optional[int],
             device : Optional[Device],
             requires_grad : bool=False) -> Tensor

torch.tensor(t : complex,
             dtype : Optional[int],
             device : Optional[Device],
             requires_grad : bool=False) -> Tensor

torch.tensor(data : List[t],
             dtype : Optional[int],
             device : Optional[Device],
             requires_grad : bool=False) -> Tensor

torch.tensor_split(self : Tensor,
                   sections : int,
                   dim : int=0) -> List[Tensor]

torch.tensor_split(self : Tensor,
                   indices : List[int],
                   dim : int=0) -> List[Tensor]

torch.tensor_split(self : Tensor,
                   tensor_indices_or_sections : Tensor,
                   dim : int=0) -> List[Tensor]

torch.threshold(self : Tensor,
                threshold : number,
                value : number) -> Tensor

torch.threshold(self : Tensor,
                threshold : number,
                value : number,
                out : Tensor) -> Tensor

torch.threshold_(self : Tensor,
                 threshold : number,
                 value : number) -> Tensor

torch.tile(self : Tensor,
           dims : List[int]) -> Tensor

torch.topk(self : Tensor,
           k : int,
           dim : int=-1,
           largest : bool=True,
           sorted : bool=True) -> Tuple[Tensor, Tensor]

torch.topk(self : Tensor,
           k : int,
           dim : int=-1,
           largest : bool=True,
           sorted : bool=True,
           values : Tensor,
           indices : Tensor) -> Tuple[Tensor, Tensor]

torch.trace(self : Tensor) -> Tensor

torch.trace(self : Tensor,
            out : Tensor) -> Tensor

torch.transpose(self : Tensor,
                dim0 : int,
                dim1 : int) -> Tensor

torch.transpose(self : Tensor,
                dim0 : str,
                dim1 : str) -> Tensor

torch.transpose_copy(self : Tensor,
                     dim0 : int,
                     dim1 : int) -> Tensor

torch.transpose_copy(self : Tensor,
                     dim0 : int,
                     dim1 : int,
                     out : Tensor) -> Tensor

torch.trapezoid(y : Tensor,
                x : Tensor,
                dim : int=-1) -> Tensor

torch.trapezoid(y : Tensor,
                dx : number=1,
                dim : int=-1) -> Tensor

torch.trapz(y : Tensor,
            x : Tensor,
            dim : int=-1) -> Tensor

torch.trapz(y : Tensor,
            dx : float=1.0,
            dim : int=-1) -> Tensor

torch.triangular_solve(self : Tensor,
                       A : Tensor,
                       upper : bool=True,
                       transpose : bool=False,
                       unitriangular : bool=False) -> Tuple[Tensor, Tensor]

torch.triangular_solve(self : Tensor,
                       A : Tensor,
                       upper : bool=True,
                       transpose : bool=False,
                       unitriangular : bool=False,
                       X : Tensor,
                       M : Tensor) -> Tuple[Tensor, Tensor]

torch.tril(self : Tensor,
           diagonal : int=0) -> Tensor

torch.tril(self : Tensor,
           diagonal : int=0,
           out : Tensor) -> Tensor

torch.tril_indices(row : int,
                   col : int,
                   offset : int=0,
                   dtype : Optional[int]=4,
                   layout : Optional[int],
                   device : Optional[Device],
                   pin_memory : Optional[bool]) -> Tensor

torch.tril_indices(row : int,
                   col : int,
                   offset : int=0,
                   out : Tensor) -> Tensor

torch.triplet_margin_loss(anchor : Tensor,
                          positive : Tensor,
                          negative : Tensor,
                          margin : float=1.0,
                          p : float=2.0,
                          eps : float=1e-06,
                          swap : bool=False,
                          reduction : int=1) -> Tensor

torch.triu(self : Tensor,
           diagonal : int=0) -> Tensor

torch.triu(self : Tensor,
           diagonal : int=0,
           out : Tensor) -> Tensor

torch.triu_indices(row : int,
                   col : int,
                   offset : int=0,
                   dtype : Optional[int]=4,
                   layout : Optional[int],
                   device : Optional[Device],
                   pin_memory : Optional[bool]) -> Tensor

torch.triu_indices(row : int,
                   col : int,
                   offset : int=0,
                   out : Tensor) -> Tensor

torch.true_divide(self : Tensor,
                  other : Tensor) -> Tensor

torch.true_divide(self : Tensor,
                  other : number) -> Tensor

torch.true_divide(self : Tensor,
                  other : Tensor,
                  out : Tensor) -> Tensor

torch.trunc(self : Tensor) -> Tensor

torch.trunc(self : Tensor,
            out : Tensor) -> Tensor

torch.trunc_(self : Tensor) -> Tensor

torch.unbind(self : Tensor,
             dim : int=0) -> List[Tensor]

torch.unbind(self : Tensor,
             dim : str) -> List[Tensor]

torch.unbind_copy(self : Tensor,
                  dim : int=0) -> List[Tensor]

torch.unbind_copy(self : Tensor,
                  dim : int=0,
                  out : List[Tensor]) -> Tuple[]

torch.unflatten(self : Tensor,
                dim : int,
                sizes : List[int]) -> Tensor

torch.unflatten(self : Tensor,
                dim : str,
                sizes : List[int],
                names : List[str]) -> Tensor

torch.unfold_copy(self : Tensor,
                  dimension : int,
                  size : int,
                  step : int) -> Tensor

torch.unfold_copy(self : Tensor,
                  dimension : int,
                  size : int,
                  step : int,
                  out : Tensor) -> Tensor

torch.unsafe_chunk(self : Tensor,
                   chunks : int,
                   dim : int=0) -> List[Tensor]

torch.unsafe_split(self : Tensor,
                   split_size : int,
                   dim : int=0) -> List[Tensor]

torch.unsafe_split(self : Tensor,
                   split_size : int,
                   dim : int=0,
                   out : List[Tensor]) -> Tuple[]

torch.unsafe_split_with_sizes(self : Tensor,
                              split_sizes : List[int],
                              dim : int=0) -> List[Tensor]

torch.unsafe_split_with_sizes(self : Tensor,
                              split_sizes : List[int],
                              dim : int=0,
                              out : List[Tensor]) -> Tuple[]

torch.unsqueeze(self : Tensor,
                dim : int) -> Tensor

torch.unsqueeze_copy(self : Tensor,
                     dim : int) -> Tensor

torch.unsqueeze_copy(self : Tensor,
                     dim : int,
                     out : Tensor) -> Tensor

torch.values_copy(self : Tensor) -> Tensor

torch.values_copy(self : Tensor,
                  out : Tensor) -> Tensor

torch.vander(x : Tensor,
             N : Optional[int],
             increasing : bool=False) -> Tensor

torch.var(self : Tensor,
          unbiased : bool=True) -> Tensor

torch.var(self : Tensor,
          dim : Optional[List[int]],
          unbiased : bool=True,
          keepdim : bool=False) -> Tensor

torch.var(self : Tensor,
          dim : Optional[List[int]],
          correction : Optional[number],
          keepdim : bool=False) -> Tensor

torch.var(self : Tensor,
          dim : List[str],
          unbiased : bool=True,
          keepdim : bool=False) -> Tensor

torch.var(self : Tensor,
          dim : List[str],
          unbiased : bool=True,
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.var(self : Tensor,
          dim : Optional[List[int]],
          unbiased : bool=True,
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.var(self : Tensor,
          dim : Optional[List[int]],
          correction : Optional[number],
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.var(self : Tensor,
          dim : List[str],
          correction : Optional[number],
          keepdim : bool=False) -> Tensor

torch.var(self : Tensor,
          dim : List[str],
          correction : Optional[number],
          keepdim : bool=False,
          out : Tensor) -> Tensor

torch.var_mean(self : Tensor,
               unbiased : bool=True) -> Tuple[Tensor, Tensor]

torch.var_mean(self : Tensor,
               dim : Optional[List[int]],
               unbiased : bool=True,
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.var_mean(self : Tensor,
               dim : Optional[List[int]],
               correction : Optional[number],
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.var_mean(self : Tensor,
               dim : List[str],
               unbiased : bool=True,
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.var_mean(self : Tensor,
               dim : List[str],
               correction : Optional[number],
               keepdim : bool=False) -> Tuple[Tensor, Tensor]

torch.var_mean(self : Tensor,
               dim : Optional[List[int]],
               correction : Optional[number],
               keepdim : bool=False,
               out0 : Tensor,
               out1 : Tensor) -> Tuple[Tensor, Tensor]

torch.vdot(self : Tensor,
           other : Tensor) -> Tensor

torch.vdot(self : Tensor,
           other : Tensor,
           out : Tensor) -> Tensor

torch.view_as_complex(self : Tensor) -> Tensor

torch.view_as_complex_copy(self : Tensor) -> Tensor

torch.view_as_complex_copy(self : Tensor,
                           out : Tensor) -> Tensor

torch.view_as_real(self : Tensor) -> Tensor

torch.view_as_real_copy(self : Tensor) -> Tensor

torch.view_as_real_copy(self : Tensor,
                        out : Tensor) -> Tensor

torch.view_copy(self : Tensor,
                size : List[int]) -> Tensor

torch.view_copy(self : Tensor,
                dtype : int) -> Tensor

torch.view_copy(self : Tensor,
                size : List[int],
                out : Tensor) -> Tensor

torch.view_copy(self : Tensor,
                dtype : int,
                out : Tensor) -> Tensor

torch.vsplit(self : Tensor,
             sections : int) -> List[Tensor]

torch.vsplit(self : Tensor,
             indices : List[int]) -> List[Tensor]

torch.vstack(tensors : List[Tensor]) -> Tensor

torch.vstack(tensors : List[Tensor],
             out : Tensor) -> Tensor

torch.wait(self : Future[t]) -> t

torch.where(condition : Tensor,
            self : Tensor,
            other : Tensor) -> Tensor

torch.where(condition : Tensor,
            self : Tensor,
            other : number) -> Tensor

torch.where(condition : Tensor,
            self : number,
            other : Tensor) -> Tensor

torch.where(condition : Tensor,
            self : number,
            other : number) -> Tensor

torch.where(condition : Tensor) -> List[Tensor]

torch.where(condition : Tensor,
            self : Tensor,
            other : Tensor,
            out : Tensor) -> Tensor

torch.xlogy(self : Tensor,
            other : Tensor) -> Tensor

torch.xlogy(self : Tensor,
            other : number) -> Tensor

torch.xlogy(self : number,
            other : Tensor) -> Tensor

torch.xlogy(self : Tensor,
            other : Tensor,
            out : Tensor) -> Tensor

torch.xlogy(self : number,
            other : Tensor,
            out : Tensor) -> Tensor

torch.xlogy(self : Tensor,
            other : number,
            out : Tensor) -> Tensor

torch.xlogy_(self : Tensor,
             other : Tensor) -> Tensor

torch.xlogy_(self : Tensor,
             other : number) -> Tensor

torch.zero_(self : Tensor) -> Tensor

torch.zeros(size : List[int],
            names : Optional[List[str]],
            dtype : Optional[int],
            layout : Optional[int],
            device : Optional[Device],
            pin_memory : Optional[bool]) -> Tensor

torch.zeros(size : List[int],
            dtype : Optional[int],
            layout : Optional[int],
            device : Optional[Device],
            pin_memory : Optional[bool]) -> Tensor

torch.zeros(size : List[int],
            names : Optional[List[str]],
            out : Tensor) -> Tensor

torch.zeros(size : List[int],
            out : Tensor) -> Tensor

torch.zeros_like(self : Tensor,
                 dtype : Optional[int],
                 layout : Optional[int],
                 device : Optional[Device],
                 pin_memory : Optional[bool],
                 memory_format : Optional[int]) -> Tensor

torch.zeros_like(self : Tensor,
                 memory_format : Optional[int],
                 out : Tensor) -> Tensor

torch._C._nn.adaptive_avg_pool2d(self : Tensor,
                                 output_size : List[int]) -> Tensor

torch._C._nn.adaptive_avg_pool2d(self : Tensor,
                                 output_size : List[int],
                                 out : Tensor) -> Tensor

torch._C._nn.adaptive_avg_pool3d(self : Tensor,
                                 output_size : List[int]) -> Tensor

torch._C._nn.adaptive_avg_pool3d(self : Tensor,
                                 output_size : List[int],
                                 out : Tensor) -> Tensor

torch._C._nn.adaptive_max_pool2d(self : Tensor,
                                 output_size : List[int]) -> Tuple[Tensor, Tensor]

torch._C._nn.adaptive_max_pool2d(self : Tensor,
                                 output_size : List[int],
                                 out : Tensor,
                                 indices : Tensor) -> Tuple[Tensor, Tensor]

torch._C._nn.adaptive_max_pool3d(self : Tensor,
                                 output_size : List[int]) -> Tuple[Tensor, Tensor]

torch._C._nn.adaptive_max_pool3d(self : Tensor,
                                 output_size : List[int],
                                 out : Tensor,
                                 indices : Tensor) -> Tuple[Tensor, Tensor]

torch._C._nn.avg_pool2d(self : Tensor,
                        kernel_size : List[int],
                        stride : List[int]=[],
                        padding : List[int]=[0, 0],
                        ceil_mode : bool=False,
                        count_include_pad : bool=True,
                        divisor_override : Optional[int]) -> Tensor

torch._C._nn.avg_pool2d(self : Tensor,
                        kernel_size : List[int],
                        stride : List[int]=[],
                        padding : List[int]=[0, 0],
                        ceil_mode : bool=False,
                        count_include_pad : bool=True,
                        divisor_override : Optional[int],
                        out : Tensor) -> Tensor

torch._C._nn.avg_pool3d(self : Tensor,
                        kernel_size : List[int],
                        stride : List[int]=[],
                        padding : List[int]=[0, 0, 0],
                        ceil_mode : bool=False,
                        count_include_pad : bool=True,
                        divisor_override : Optional[int]) -> Tensor

torch._C._nn.avg_pool3d(self : Tensor,
                        kernel_size : List[int],
                        stride : List[int]=[],
                        padding : List[int]=[0, 0, 0],
                        ceil_mode : bool=False,
                        count_include_pad : bool=True,
                        divisor_override : Optional[int],
                        out : Tensor) -> Tensor

torch._C._nn.binary_cross_entropy(self : Tensor,
                                  target : Tensor,
                                  weight : Optional[Tensor],
                                  reduction : int=1) -> Tensor

torch._C._nn.binary_cross_entropy(self : Tensor,
                                  target : Tensor,
                                  weight : Optional[Tensor],
                                  reduction : int=1,
                                  out : Tensor) -> Tensor

torch._C._nn.col2im(self : Tensor,
                    output_size : List[int],
                    kernel_size : List[int],
                    dilation : List[int],
                    padding : List[int],
                    stride : List[int]) -> Tensor

torch._C._nn.col2im(self : Tensor,
                    output_size : List[int],
                    kernel_size : List[int],
                    dilation : List[int],
                    padding : List[int],
                    stride : List[int],
                    out : Tensor) -> Tensor

torch._C._nn.conv_depthwise3d(self : Tensor,
                              weight : Tensor,
                              kernel_size : List[int],
                              bias : Optional[Tensor],
                              stride : List[int],
                              padding : List[int],
                              dilation : List[int],
                              out : Tensor) -> Tensor

torch._C._nn.conv_depthwise3d(self : Tensor,
                              weight : Tensor,
                              kernel_size : List[int],
                              bias : Optional[Tensor],
                              stride : List[int],
                              padding : List[int],
                              dilation : List[int]) -> Tensor

torch._C._nn.cross_entropy_loss(self : Tensor,
                                target : Tensor,
                                weight : Optional[Tensor],
                                reduction : int=1,
                                ignore_index : int=-100,
                                label_smoothing : float=0.0) -> Tensor

torch._C._nn.elu(self : Tensor,
                 alpha : number=1,
                 scale : number=1,
                 input_scale : number=1) -> Tensor

torch._C._nn.elu(self : Tensor,
                 alpha : number=1,
                 scale : number=1,
                 input_scale : number=1,
                 out : Tensor) -> Tensor

torch._C._nn.elu_(self : Tensor,
                  alpha : number=1,
                  scale : number=1,
                  input_scale : number=1) -> Tensor

torch._C._nn.flatten_dense_tensors(tensors : List[Tensor]) -> Tensor

torch._C._nn.fractional_max_pool2d(self : Tensor,
                                   kernel_size : List[int],
                                   output_size : List[int],
                                   random_samples : Tensor) -> Tuple[Tensor, Tensor]

torch._C._nn.fractional_max_pool2d(self : Tensor,
                                   kernel_size : List[int],
                                   output_size : List[int],
                                   random_samples : Tensor,
                                   output : Tensor,
                                   indices : Tensor) -> Tuple[Tensor, Tensor]

torch._C._nn.fractional_max_pool3d(self : Tensor,
                                   kernel_size : List[int],
                                   output_size : List[int],
                                   random_samples : Tensor) -> Tuple[Tensor, Tensor]

torch._C._nn.fractional_max_pool3d(self : Tensor,
                                   kernel_size : List[int],
                                   output_size : List[int],
                                   random_samples : Tensor,
                                   output : Tensor,
                                   indices : Tensor) -> Tuple[Tensor, Tensor]

torch._C._nn.gelu(self : Tensor,
                  approximate : str=none) -> Tensor

torch._C._nn.gelu(self : Tensor,
                  approximate : str=none,
                  out : Tensor) -> Tensor

torch._C._nn.gelu_(self : Tensor,
                   approximate : str=none) -> Tensor

torch._C._nn.glu(self : Tensor,
                 dim : int=-1) -> Tensor

torch._C._nn.glu(self : Tensor,
                 dim : int=-1,
                 out : Tensor) -> Tensor

torch._C._nn.hardsigmoid(self : Tensor) -> Tensor

torch._C._nn.hardsigmoid(self : Tensor,
                         out : Tensor) -> Tensor

torch._C._nn.hardsigmoid_(self : Tensor) -> Tensor

torch._C._nn.hardswish(self : Tensor) -> Tensor

torch._C._nn.hardswish(self : Tensor,
                       out : Tensor) -> Tensor

torch._C._nn.hardswish_(self : Tensor) -> Tensor

torch._C._nn.hardtanh(self : Tensor,
                      min_val : number=-1,
                      max_val : number=1) -> Tensor

torch._C._nn.hardtanh(self : Tensor,
                      min_val : number=-1,
                      max_val : number=1,
                      out : Tensor) -> Tensor

torch._C._nn.hardtanh_(self : Tensor,
                       min_val : number=-1,
                       max_val : number=1) -> Tensor

torch._C._nn.huber_loss(self : Tensor,
                        target : Tensor,
                        reduction : int=1,
                        delta : float=1.0) -> Tensor

torch._C._nn.huber_loss(self : Tensor,
                        target : Tensor,
                        reduction : int=1,
                        delta : float=1.0,
                        out : Tensor) -> Tensor

torch._C._nn.im2col(self : Tensor,
                    kernel_size : List[int],
                    dilation : List[int],
                    padding : List[int],
                    stride : List[int]) -> Tensor

torch._C._nn.im2col(self : Tensor,
                    kernel_size : List[int],
                    dilation : List[int],
                    padding : List[int],
                    stride : List[int],
                    out : Tensor) -> Tensor

torch._C._nn.l1_loss(self : Tensor,
                     target : Tensor,
                     reduction : int=1) -> Tensor

torch._C._nn.leaky_relu(self : Tensor,
                        negative_slope : number=0.01) -> Tensor

torch._C._nn.leaky_relu(self : Tensor,
                        negative_slope : number=0.01,
                        out : Tensor) -> Tensor

torch._C._nn.leaky_relu_(self : Tensor,
                         negative_slope : number=0.01) -> Tensor

torch._C._nn.linear(input : Tensor,
                    weight : Tensor,
                    bias : Optional[Tensor]) -> Tensor

torch._C._nn.linear(input : Tensor,
                    weight : Tensor,
                    bias : Optional[Tensor],
                    out : Tensor) -> Tensor

torch._C._nn.log_sigmoid(self : Tensor) -> Tensor

torch._C._nn.log_sigmoid(self : Tensor,
                         out : Tensor) -> Tensor

torch._C._nn.max_pool2d_with_indices(self : Tensor,
                                     kernel_size : List[int],
                                     stride : List[int]=[],
                                     padding : List[int]=[0, 0],
                                     dilation : List[int]=[1, 1],
                                     ceil_mode : bool=False) -> Tuple[Tensor, Tensor]

torch._C._nn.max_pool2d_with_indices(self : Tensor,
                                     kernel_size : List[int],
                                     stride : List[int]=[],
                                     padding : List[int]=[0, 0],
                                     dilation : List[int]=[1, 1],
                                     ceil_mode : bool=False,
                                     out : Tensor,
                                     indices : Tensor) -> Tuple[Tensor, Tensor]

torch._C._nn.max_pool3d_with_indices(self : Tensor,
                                     kernel_size : List[int],
                                     stride : List[int]=[],
                                     padding : List[int]=[0, 0, 0],
                                     dilation : List[int]=[1, 1, 1],
                                     ceil_mode : bool=False) -> Tuple[Tensor, Tensor]

torch._C._nn.max_pool3d_with_indices(self : Tensor,
                                     kernel_size : List[int],
                                     stride : List[int]=[],
                                     padding : List[int]=[0, 0, 0],
                                     dilation : List[int]=[1, 1, 1],
                                     ceil_mode : bool=False,
                                     out : Tensor,
                                     indices : Tensor) -> Tuple[Tensor, Tensor]

torch._C._nn.max_unpool2d(self : Tensor,
                          indices : Tensor,
                          output_size : List[int]) -> Tensor

torch._C._nn.max_unpool2d(self : Tensor,
                          indices : Tensor,
                          output_size : List[int],
                          out : Tensor) -> Tensor

torch._C._nn.max_unpool3d(self : Tensor,
                          indices : Tensor,
                          output_size : List[int],
                          stride : List[int],
                          padding : List[int]) -> Tensor

torch._C._nn.max_unpool3d(self : Tensor,
                          indices : Tensor,
                          output_size : List[int],
                          stride : List[int],
                          padding : List[int],
                          out : Tensor) -> Tensor

torch._C._nn.mish(self : Tensor) -> Tensor

torch._C._nn.mish(self : Tensor,
                  out : Tensor) -> Tensor

torch._C._nn.mish_(self : Tensor) -> Tensor

torch._C._nn.mkldnn_linear(self : Tensor,
                           weight : Tensor,
                           bias : Optional[Tensor],
                           out : Tensor) -> Tensor

torch._C._nn.mkldnn_linear(self : Tensor,
                           weight : Tensor,
                           bias : Optional[Tensor]) -> Tensor

torch._C._nn.mkldnn_reorder_conv2d_weight(self : Tensor,
                                          padding : List[int]=[0, 0],
                                          stride : List[int]=[1, 1],
                                          dilation : List[int]=[1, 1],
                                          groups : int=1,
                                          input_size : Optional[List[int]],
                                          out : Tensor) -> Tensor

torch._C._nn.mkldnn_reorder_conv2d_weight(self : Tensor,
                                          padding : List[int]=[0, 0],
                                          stride : List[int]=[1, 1],
                                          dilation : List[int]=[1, 1],
                                          groups : int=1,
                                          input_size : Optional[List[int]]) -> Tensor

torch._C._nn.mkldnn_reorder_conv3d_weight(self : Tensor,
                                          padding : List[int]=[0, 0, 0],
                                          stride : List[int]=[1, 1, 1],
                                          dilation : List[int]=[1, 1, 1],
                                          groups : int=1,
                                          input_size : Optional[List[int]],
                                          out : Tensor) -> Tensor

torch._C._nn.mkldnn_reorder_conv3d_weight(self : Tensor,
                                          padding : List[int]=[0, 0, 0],
                                          stride : List[int]=[1, 1, 1],
                                          dilation : List[int]=[1, 1, 1],
                                          groups : int=1,
                                          input_size : Optional[List[int]]) -> Tensor

torch._C._nn.mse_loss(self : Tensor,
                      target : Tensor,
                      reduction : int=1) -> Tensor

torch._C._nn.mse_loss(self : Tensor,
                      target : Tensor,
                      reduction : int=1,
                      out : Tensor) -> Tensor

torch._C._nn.multi_margin_loss(self : Tensor,
                               target : Tensor,
                               p : number=1,
                               margin : number=1,
                               weight : Optional[Tensor],
                               reduction : int=1) -> Tensor

torch._C._nn.multi_margin_loss(self : Tensor,
                               target : Tensor,
                               p : number=1,
                               margin : number=1,
                               weight : Optional[Tensor],
                               reduction : int=1,
                               out : Tensor) -> Tensor

torch._C._nn.multilabel_margin_loss(self : Tensor,
                                    target : Tensor,
                                    reduction : int=1) -> Tensor

torch._C._nn.multilabel_margin_loss(self : Tensor,
                                    target : Tensor,
                                    reduction : int=1,
                                    out : Tensor) -> Tensor

torch._C._nn.nll_loss(self : Tensor,
                      target : Tensor,
                      weight : Optional[Tensor],
                      reduction : int=1,
                      ignore_index : int=-100) -> Tensor

torch._C._nn.nll_loss(self : Tensor,
                      target : Tensor,
                      weight : Optional[Tensor],
                      reduction : int=1,
                      ignore_index : int=-100,
                      out : Tensor) -> Tensor

torch._C._nn.nll_loss2d(self : Tensor,
                        target : Tensor,
                        weight : Optional[Tensor],
                        reduction : int=1,
                        ignore_index : int=-100) -> Tensor

torch._C._nn.nll_loss2d(self : Tensor,
                        target : Tensor,
                        weight : Optional[Tensor],
                        reduction : int=1,
                        ignore_index : int=-100,
                        out : Tensor) -> Tensor

torch._C._nn.nll_loss_nd(self : Tensor,
                         target : Tensor,
                         weight : Optional[Tensor],
                         reduction : int=1,
                         ignore_index : int=-100) -> Tensor

torch._C._nn.one_hot(self : Tensor,
                     num_classes : int=-1) -> Tensor

torch._C._nn.pad(self : Tensor,
                 pad : List[int],
                 mode : str=constant,
                 value : Optional[float]) -> Tensor

torch._C._nn.pad_sequence(sequences : List[Tensor],
                          batch_first : bool=False,
                          padding_value : float=0.0,
                          padding_side : str=right) -> Tensor

torch._C._nn.reflection_pad1d(self : Tensor,
                              padding : List[int]) -> Tensor

torch._C._nn.reflection_pad1d(self : Tensor,
                              padding : List[int],
                              out : Tensor) -> Tensor

torch._C._nn.reflection_pad2d(self : Tensor,
                              padding : List[int]) -> Tensor

torch._C._nn.reflection_pad2d(self : Tensor,
                              padding : List[int],
                              out : Tensor) -> Tensor

torch._C._nn.reflection_pad3d(self : Tensor,
                              padding : List[int]) -> Tensor

torch._C._nn.reflection_pad3d(self : Tensor,
                              padding : List[int],
                              out : Tensor) -> Tensor

torch._C._nn.relu6(self : Tensor) -> Tensor

torch._C._nn.relu6_(self : Tensor) -> Tensor

torch._C._nn.replication_pad1d(self : Tensor,
                               padding : List[int]) -> Tensor

torch._C._nn.replication_pad1d(self : Tensor,
                               padding : List[int],
                               out : Tensor) -> Tensor

torch._C._nn.replication_pad2d(self : Tensor,
                               padding : List[int]) -> Tensor

torch._C._nn.replication_pad2d(self : Tensor,
                               padding : List[int],
                               out : Tensor) -> Tensor

torch._C._nn.replication_pad3d(self : Tensor,
                               padding : List[int]) -> Tensor

torch._C._nn.replication_pad3d(self : Tensor,
                               padding : List[int],
                               out : Tensor) -> Tensor

torch._C._nn.rrelu_with_noise(self : Tensor,
                              noise : Tensor,
                              lower : number=0.125,
                              upper : number=0.3333333333333333,
                              training : bool=False,
                              generator : Optional[Generator]) -> Tensor

torch._C._nn.rrelu_with_noise(self : Tensor,
                              noise : Tensor,
                              lower : number=0.125,
                              upper : number=0.3333333333333333,
                              training : bool=False,
                              generator : Optional[Generator],
                              out : Tensor) -> Tensor

torch._C._nn.rrelu_with_noise_(self : Tensor,
                               noise : Tensor,
                               lower : number=0.125,
                               upper : number=0.3333333333333333,
                               training : bool=False,
                               generator : Optional[Generator]) -> Tensor

torch._C._nn.scaled_dot_product_attention(query : Tensor,
                                          key : Tensor,
                                          value : Tensor,
                                          attn_mask : Optional[Tensor],
                                          dropout_p : float=0.0,
                                          is_causal : bool=False,
                                          scale : Optional[float],
                                          enable_gqa : bool=False) -> Tensor

torch._C._nn.silu(self : Tensor) -> Tensor

torch._C._nn.silu(self : Tensor,
                  out : Tensor) -> Tensor

torch._C._nn.silu_(self : Tensor) -> Tensor

torch._C._nn.slow_conv3d(self : Tensor,
                         weight : Tensor,
                         kernel_size : List[int],
                         bias : Optional[Tensor],
                         stride : List[int]=[1, 1, 1],
                         padding : List[int]=[0, 0, 0]) -> Tensor

torch._C._nn.slow_conv3d(self : Tensor,
                         weight : Tensor,
                         kernel_size : List[int],
                         bias : Optional[Tensor],
                         stride : List[int]=[1, 1, 1],
                         padding : List[int]=[0, 0, 0],
                         out : Tensor) -> Tensor

torch._C._nn.slow_conv_dilated2d(self : Tensor,
                                 weight : Tensor,
                                 kernel_size : List[int],
                                 bias : Optional[Tensor],
                                 stride : List[int]=[1, 1],
                                 padding : List[int]=[0, 0],
                                 dilation : List[int]=[1, 1]) -> Tensor

torch._C._nn.slow_conv_dilated2d(self : Tensor,
                                 weight : Tensor,
                                 kernel_size : List[int],
                                 bias : Optional[Tensor],
                                 stride : List[int]=[1, 1],
                                 padding : List[int]=[0, 0],
                                 dilation : List[int]=[1, 1],
                                 out : Tensor) -> Tensor

torch._C._nn.slow_conv_dilated3d(self : Tensor,
                                 weight : Tensor,
                                 kernel_size : List[int],
                                 bias : Optional[Tensor],
                                 stride : List[int]=[1, 1, 1],
                                 padding : List[int]=[0, 0, 0],
                                 dilation : List[int]=[1, 1, 1]) -> Tensor

torch._C._nn.slow_conv_dilated3d(self : Tensor,
                                 weight : Tensor,
                                 kernel_size : List[int],
                                 bias : Optional[Tensor],
                                 stride : List[int]=[1, 1, 1],
                                 padding : List[int]=[0, 0, 0],
                                 dilation : List[int]=[1, 1, 1],
                                 out : Tensor) -> Tensor

torch._C._nn.slow_conv_transpose2d(self : Tensor,
                                   weight : Tensor,
                                   kernel_size : List[int],
                                   bias : Optional[Tensor],
                                   stride : List[int]=[1, 1],
                                   padding : List[int]=[0, 0],
                                   output_padding : List[int]=[0, 0],
                                   dilation : List[int]=[1, 1]) -> Tensor

torch._C._nn.slow_conv_transpose2d(self : Tensor,
                                   weight : Tensor,
                                   kernel_size : List[int],
                                   bias : Optional[Tensor],
                                   stride : List[int]=[1, 1],
                                   padding : List[int]=[0, 0],
                                   output_padding : List[int]=[0, 0],
                                   dilation : List[int]=[1, 1],
                                   out : Tensor) -> Tensor

torch._C._nn.slow_conv_transpose3d(self : Tensor,
                                   weight : Tensor,
                                   kernel_size : List[int],
                                   bias : Optional[Tensor],
                                   stride : List[int]=[1, 1, 1],
                                   padding : List[int]=[0, 0, 0],
                                   output_padding : List[int]=[0, 0, 0],
                                   dilation : List[int]=[1, 1, 1]) -> Tensor

torch._C._nn.slow_conv_transpose3d(self : Tensor,
                                   weight : Tensor,
                                   kernel_size : List[int],
                                   bias : Optional[Tensor],
                                   stride : List[int]=[1, 1, 1],
                                   padding : List[int]=[0, 0, 0],
                                   output_padding : List[int]=[0, 0, 0],
                                   dilation : List[int]=[1, 1, 1],
                                   out : Tensor) -> Tensor

torch._C._nn.smooth_l1_loss(self : Tensor,
                            target : Tensor,
                            reduction : int=1,
                            beta : float=1.0) -> Tensor

torch._C._nn.smooth_l1_loss(self : Tensor,
                            target : Tensor,
                            reduction : int=1,
                            beta : float=1.0,
                            out : Tensor) -> Tensor

torch._C._nn.soft_margin_loss(self : Tensor,
                              target : Tensor,
                              reduction : int=1) -> Tensor

torch._C._nn.soft_margin_loss(self : Tensor,
                              target : Tensor,
                              reduction : int=1,
                              out : Tensor) -> Tensor

torch._C._nn.softplus(self : Tensor,
                      beta : number=1,
                      threshold : number=20) -> Tensor

torch._C._nn.softplus(self : Tensor,
                      beta : number=1,
                      threshold : number=20,
                      out : Tensor) -> Tensor

torch._C._nn.softshrink(self : Tensor,
                        lambd : number=0.5) -> Tensor

torch._C._nn.softshrink(self : Tensor,
                        lambd : number=0.5,
                        out : Tensor) -> Tensor

torch._C._nn.thnn_conv2d(self : Tensor,
                         weight : Tensor,
                         kernel_size : List[int],
                         bias : Optional[Tensor],
                         stride : List[int]=[1, 1],
                         padding : List[int]=[0, 0]) -> Tensor

torch._C._nn.thnn_conv2d(self : Tensor,
                         weight : Tensor,
                         kernel_size : List[int],
                         bias : Optional[Tensor],
                         stride : List[int]=[1, 1],
                         padding : List[int]=[0, 0],
                         out : Tensor) -> Tensor

torch._C._nn.unflatten_dense_tensors(flat : Tensor,
                                     tensors : List[Tensor]) -> List[Tensor]

torch._C._nn.upsample_bicubic2d(self : Tensor,
                                output_size : List[int],
                                align_corners : bool,
                                scales_h : Optional[float],
                                scales_w : Optional[float]) -> Tensor

torch._C._nn.upsample_bicubic2d(input : Tensor,
                                output_size : Optional[List[int]],
                                align_corners : bool,
                                scale_factors : Optional[List[float]]) -> Tensor

torch._C._nn.upsample_bicubic2d(self : Tensor,
                                output_size : List[int],
                                align_corners : bool,
                                scales_h : Optional[float],
                                scales_w : Optional[float],
                                out : Tensor) -> Tensor

torch._C._nn.upsample_bilinear2d(self : Tensor,
                                 output_size : List[int],
                                 align_corners : bool,
                                 scales_h : Optional[float],
                                 scales_w : Optional[float]) -> Tensor

torch._C._nn.upsample_bilinear2d(input : Tensor,
                                 output_size : Optional[List[int]],
                                 align_corners : bool,
                                 scale_factors : Optional[List[float]]) -> Tensor

torch._C._nn.upsample_bilinear2d(self : Tensor,
                                 output_size : List[int],
                                 align_corners : bool,
                                 scales_h : Optional[float],
                                 scales_w : Optional[float],
                                 out : Tensor) -> Tensor

torch._C._nn.upsample_bilinear2d(input : Tensor,
                                 output_size : Optional[List[int]],
                                 align_corners : bool,
                                 scale_factors : Optional[List[float]],
                                 out : Tensor) -> Tensor

torch._C._nn.upsample_linear1d(self : Tensor,
                               output_size : List[int],
                               align_corners : bool,
                               scales : Optional[float]) -> Tensor

torch._C._nn.upsample_linear1d(input : Tensor,
                               output_size : Optional[List[int]],
                               align_corners : bool,
                               scale_factors : Optional[List[float]]) -> Tensor

torch._C._nn.upsample_linear1d(self : Tensor,
                               output_size : List[int],
                               align_corners : bool,
                               scales : Optional[float],
                               out : Tensor) -> Tensor

torch._C._nn.upsample_nearest1d(self : Tensor,
                                output_size : List[int],
                                scales : Optional[float]) -> Tensor

torch._C._nn.upsample_nearest1d(input : Tensor,
                                output_size : Optional[List[int]],
                                scale_factors : Optional[List[float]]) -> Tensor

torch._C._nn.upsample_nearest1d(self : Tensor,
                                output_size : List[int],
                                scales : Optional[float],
                                out : Tensor) -> Tensor

torch._C._nn.upsample_nearest2d(self : Tensor,
                                output_size : List[int],
                                scales_h : Optional[float],
                                scales_w : Optional[float]) -> Tensor

torch._C._nn.upsample_nearest2d(input : Tensor,
                                output_size : Optional[List[int]],
                                scale_factors : Optional[List[float]]) -> Tensor

torch._C._nn.upsample_nearest2d(self : Tensor,
                                output_size : List[int],
                                scales_h : Optional[float],
                                scales_w : Optional[float],
                                out : Tensor) -> Tensor

torch._C._nn.upsample_nearest2d(input : Tensor,
                                output_size : Optional[List[int]],
                                scale_factors : Optional[List[float]],
                                out : Tensor) -> Tensor

torch._C._nn.upsample_nearest3d(self : Tensor,
                                output_size : List[int],
                                scales_d : Optional[float],
                                scales_h : Optional[float],
                                scales_w : Optional[float]) -> Tensor

torch._C._nn.upsample_nearest3d(input : Tensor,
                                output_size : Optional[List[int]],
                                scale_factors : Optional[List[float]]) -> Tensor

torch._C._nn.upsample_nearest3d(self : Tensor,
                                output_size : List[int],
                                scales_d : Optional[float],
                                scales_h : Optional[float],
                                scales_w : Optional[float],
                                out : Tensor) -> Tensor

torch._C._nn.upsample_trilinear3d(self : Tensor,
                                  output_size : List[int],
                                  align_corners : bool,
                                  scales_d : Optional[float],
                                  scales_h : Optional[float],
                                  scales_w : Optional[float]) -> Tensor

torch._C._nn.upsample_trilinear3d(input : Tensor,
                                  output_size : Optional[List[int]],
                                  align_corners : bool,
                                  scale_factors : Optional[List[float]]) -> Tensor

torch._C._nn.upsample_trilinear3d(self : Tensor,
                                  output_size : List[int],
                                  align_corners : bool,
                                  scales_d : Optional[float],
                                  scales_h : Optional[float],
                                  scales_w : Optional[float],
                                  out : Tensor) -> Tensor

torch._C._fft.fft_fft(self : Tensor,
                      n : Optional[int],
                      dim : int=-1,
                      norm : Optional[str]) -> Tensor

torch._C._fft.fft_fft(self : Tensor,
                      n : Optional[int],
                      dim : int=-1,
                      norm : Optional[str],
                      out : Tensor) -> Tensor

torch._C._fft.fft_fft2(self : Tensor,
                       s : Optional[List[int]],
                       dim : List[int]=[-2, -1],
                       norm : Optional[str]) -> Tensor

torch._C._fft.fft_fft2(self : Tensor,
                       s : Optional[List[int]],
                       dim : List[int]=[-2, -1],
                       norm : Optional[str],
                       out : Tensor) -> Tensor

torch._C._fft.fft_fftfreq(n : int,
                          d : float=1.0,
                          dtype : Optional[int],
                          layout : Optional[int],
                          device : Optional[Device],
                          pin_memory : Optional[bool]) -> Tensor

torch._C._fft.fft_fftfreq(n : int,
                          d : float=1.0,
                          out : Tensor) -> Tensor

torch._C._fft.fft_fftn(self : Tensor,
                       s : Optional[List[int]],
                       dim : Optional[List[int]],
                       norm : Optional[str]) -> Tensor

torch._C._fft.fft_fftn(self : Tensor,
                       s : Optional[List[int]],
                       dim : Optional[List[int]],
                       norm : Optional[str],
                       out : Tensor) -> Tensor

torch._C._fft.fft_fftshift(self : Tensor,
                           dim : Optional[List[int]]) -> Tensor

torch._C._fft.fft_hfft(self : Tensor,
                       n : Optional[int],
                       dim : int=-1,
                       norm : Optional[str]) -> Tensor

torch._C._fft.fft_hfft(self : Tensor,
                       n : Optional[int],
                       dim : int=-1,
                       norm : Optional[str],
                       out : Tensor) -> Tensor

torch._C._fft.fft_hfft2(self : Tensor,
                        s : Optional[List[int]],
                        dim : List[int]=[-2, -1],
                        norm : Optional[str]) -> Tensor

torch._C._fft.fft_hfft2(self : Tensor,
                        s : Optional[List[int]],
                        dim : List[int]=[-2, -1],
                        norm : Optional[str],
                        out : Tensor) -> Tensor

torch._C._fft.fft_hfftn(self : Tensor,
                        s : Optional[List[int]],
                        dim : Optional[List[int]],
                        norm : Optional[str]) -> Tensor

torch._C._fft.fft_hfftn(self : Tensor,
                        s : Optional[List[int]],
                        dim : Optional[List[int]],
                        norm : Optional[str],
                        out : Tensor) -> Tensor

torch._C._fft.fft_ifft(self : Tensor,
                       n : Optional[int],
                       dim : int=-1,
                       norm : Optional[str]) -> Tensor

torch._C._fft.fft_ifft(self : Tensor,
                       n : Optional[int],
                       dim : int=-1,
                       norm : Optional[str],
                       out : Tensor) -> Tensor

torch._C._fft.fft_ifft2(self : Tensor,
                        s : Optional[List[int]],
                        dim : List[int]=[-2, -1],
                        norm : Optional[str]) -> Tensor

torch._C._fft.fft_ifft2(self : Tensor,
                        s : Optional[List[int]],
                        dim : List[int]=[-2, -1],
                        norm : Optional[str],
                        out : Tensor) -> Tensor

torch._C._fft.fft_ifftn(self : Tensor,
                        s : Optional[List[int]],
                        dim : Optional[List[int]],
                        norm : Optional[str]) -> Tensor

torch._C._fft.fft_ifftn(self : Tensor,
                        s : Optional[List[int]],
                        dim : Optional[List[int]],
                        norm : Optional[str],
                        out : Tensor) -> Tensor

torch._C._fft.fft_ifftshift(self : Tensor,
                            dim : Optional[List[int]]) -> Tensor

torch._C._fft.fft_ihfft(self : Tensor,
                        n : Optional[int],
                        dim : int=-1,
                        norm : Optional[str]) -> Tensor

torch._C._fft.fft_ihfft(self : Tensor,
                        n : Optional[int],
                        dim : int=-1,
                        norm : Optional[str],
                        out : Tensor) -> Tensor

torch._C._fft.fft_ihfft2(self : Tensor,
                         s : Optional[List[int]],
                         dim : List[int]=[-2, -1],
                         norm : Optional[str]) -> Tensor

torch._C._fft.fft_ihfft2(self : Tensor,
                         s : Optional[List[int]],
                         dim : List[int]=[-2, -1],
                         norm : Optional[str],
                         out : Tensor) -> Tensor

torch._C._fft.fft_ihfftn(self : Tensor,
                         s : Optional[List[int]],
                         dim : Optional[List[int]],
                         norm : Optional[str]) -> Tensor

torch._C._fft.fft_ihfftn(self : Tensor,
                         s : Optional[List[int]],
                         dim : Optional[List[int]],
                         norm : Optional[str],
                         out : Tensor) -> Tensor

torch._C._fft.fft_irfft(self : Tensor,
                        n : Optional[int],
                        dim : int=-1,
                        norm : Optional[str]) -> Tensor

torch._C._fft.fft_irfft(self : Tensor,
                        n : Optional[int],
                        dim : int=-1,
                        norm : Optional[str],
                        out : Tensor) -> Tensor

torch._C._fft.fft_irfft2(self : Tensor,
                         s : Optional[List[int]],
                         dim : List[int]=[-2, -1],
                         norm : Optional[str]) -> Tensor

torch._C._fft.fft_irfft2(self : Tensor,
                         s : Optional[List[int]],
                         dim : List[int]=[-2, -1],
                         norm : Optional[str],
                         out : Tensor) -> Tensor

torch._C._fft.fft_irfftn(self : Tensor,
                         s : Optional[List[int]],
                         dim : Optional[List[int]],
                         norm : Optional[str]) -> Tensor

torch._C._fft.fft_irfftn(self : Tensor,
                         s : Optional[List[int]],
                         dim : Optional[List[int]],
                         norm : Optional[str],
                         out : Tensor) -> Tensor

torch._C._fft.fft_rfft(self : Tensor,
                       n : Optional[int],
                       dim : int=-1,
                       norm : Optional[str]) -> Tensor

torch._C._fft.fft_rfft(self : Tensor,
                       n : Optional[int],
                       dim : int=-1,
                       norm : Optional[str],
                       out : Tensor) -> Tensor

torch._C._fft.fft_rfft2(self : Tensor,
                        s : Optional[List[int]],
                        dim : List[int]=[-2, -1],
                        norm : Optional[str]) -> Tensor

torch._C._fft.fft_rfft2(self : Tensor,
                        s : Optional[List[int]],
                        dim : List[int]=[-2, -1],
                        norm : Optional[str],
                        out : Tensor) -> Tensor

torch._C._fft.fft_rfftfreq(n : int,
                           d : float=1.0,
                           dtype : Optional[int],
                           layout : Optional[int],
                           device : Optional[Device],
                           pin_memory : Optional[bool]) -> Tensor

torch._C._fft.fft_rfftfreq(n : int,
                           d : float=1.0,
                           out : Tensor) -> Tensor

torch._C._fft.fft_rfftn(self : Tensor,
                        s : Optional[List[int]],
                        dim : Optional[List[int]],
                        norm : Optional[str]) -> Tensor

torch._C._fft.fft_rfftn(self : Tensor,
                        s : Optional[List[int]],
                        dim : Optional[List[int]],
                        norm : Optional[str],
                        out : Tensor) -> Tensor

torch._C._linalg.linalg_cholesky(self : Tensor,
                                 upper : bool=False) -> Tensor

torch._C._linalg.linalg_cholesky(self : Tensor,
                                 upper : bool=False,
                                 out : Tensor) -> Tensor

torch._C._linalg.linalg_cholesky_ex(self : Tensor,
                                    upper : bool=False,
                                    check_errors : bool=False) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_cholesky_ex(self : Tensor,
                                    upper : bool=False,
                                    check_errors : bool=False,
                                    L : Tensor,
                                    info : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_cond(self : Tensor,
                             p : Optional[number]) -> Tensor

torch._C._linalg.linalg_cond(self : Tensor,
                             p : str) -> Tensor

torch._C._linalg.linalg_cond(self : Tensor,
                             p : Optional[number],
                             out : Tensor) -> Tensor

torch._C._linalg.linalg_cond(self : Tensor,
                             p : str,
                             out : Tensor) -> Tensor

torch._C._linalg.linalg_cross(self : Tensor,
                              other : Tensor,
                              dim : int=-1) -> Tensor

torch._C._linalg.linalg_cross(self : Tensor,
                              other : Tensor,
                              dim : int=-1,
                              out : Tensor) -> Tensor

torch._C._linalg.linalg_det(A : Tensor) -> Tensor

torch._C._linalg.linalg_det(A : Tensor,
                            out : Tensor) -> Tensor

torch._C._linalg.linalg_diagonal(A : Tensor,
                                 offset : int=0,
                                 dim1 : int=-2,
                                 dim2 : int=-1) -> Tensor

torch._C._linalg.linalg_eig(self : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_eig(self : Tensor,
                            eigenvalues : Tensor,
                            eigenvectors : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_eigh(self : Tensor,
                             UPLO : str=L) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_eigh(self : Tensor,
                             UPLO : str=L,
                             eigvals : Tensor,
                             eigvecs : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_eigvals(self : Tensor) -> Tensor

torch._C._linalg.linalg_eigvals(self : Tensor,
                                out : Tensor) -> Tensor

torch._C._linalg.linalg_eigvalsh(self : Tensor,
                                 UPLO : str=L) -> Tensor

torch._C._linalg.linalg_eigvalsh(self : Tensor,
                                 UPLO : str=L,
                                 out : Tensor) -> Tensor

torch._C._linalg.linalg_householder_product(input : Tensor,
                                            tau : Tensor) -> Tensor

torch._C._linalg.linalg_householder_product(input : Tensor,
                                            tau : Tensor,
                                            out : Tensor) -> Tensor

torch._C._linalg.linalg_inv(A : Tensor) -> Tensor

torch._C._linalg.linalg_inv(A : Tensor,
                            out : Tensor) -> Tensor

torch._C._linalg.linalg_inv_ex(A : Tensor,
                               check_errors : bool=False) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_inv_ex(A : Tensor,
                               check_errors : bool=False,
                               inverse : Tensor,
                               info : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_ldl_factor(self : Tensor,
                                   hermitian : bool=False) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_ldl_factor(self : Tensor,
                                   hermitian : bool=False,
                                   LD : Tensor,
                                   pivots : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_ldl_factor_ex(self : Tensor,
                                      hermitian : bool=False,
                                      check_errors : bool=False) -> Tuple[Tensor, Tensor, Tensor]

torch._C._linalg.linalg_ldl_factor_ex(self : Tensor,
                                      hermitian : bool=False,
                                      check_errors : bool=False,
                                      LD : Tensor,
                                      pivots : Tensor,
                                      info : Tensor) -> Tuple[Tensor, Tensor, Tensor]

torch._C._linalg.linalg_ldl_solve(LD : Tensor,
                                  pivots : Tensor,
                                  B : Tensor,
                                  hermitian : bool=False) -> Tensor

torch._C._linalg.linalg_ldl_solve(LD : Tensor,
                                  pivots : Tensor,
                                  B : Tensor,
                                  hermitian : bool=False,
                                  out : Tensor) -> Tensor

torch._C._linalg.linalg_lstsq(self : Tensor,
                              b : Tensor,
                              rcond : Optional[float],
                              driver : Optional[str]) -> Tuple[Tensor, Tensor, Tensor, Tensor]

torch._C._linalg.linalg_lstsq(self : Tensor,
                              b : Tensor,
                              rcond : Optional[float],
                              driver : Optional[str],
                              solution : Tensor,
                              residuals : Tensor,
                              rank : Tensor,
                              singular_values : Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]

torch._C._linalg.linalg_lu(A : Tensor,
                           pivot : bool=True) -> Tuple[Tensor, Tensor, Tensor]

torch._C._linalg.linalg_lu(A : Tensor,
                           pivot : bool=True,
                           P : Tensor,
                           L : Tensor,
                           U : Tensor) -> Tuple[Tensor, Tensor, Tensor]

torch._C._linalg.linalg_lu_factor(A : Tensor,
                                  pivot : bool=True) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_lu_factor(A : Tensor,
                                  pivot : bool=True,
                                  LU : Tensor,
                                  pivots : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_lu_factor_ex(A : Tensor,
                                     pivot : bool=True,
                                     check_errors : bool=False) -> Tuple[Tensor, Tensor, Tensor]

torch._C._linalg.linalg_lu_factor_ex(A : Tensor,
                                     pivot : bool=True,
                                     check_errors : bool=False,
                                     LU : Tensor,
                                     pivots : Tensor,
                                     info : Tensor) -> Tuple[Tensor, Tensor, Tensor]

torch._C._linalg.linalg_lu_solve(LU : Tensor,
                                 pivots : Tensor,
                                 B : Tensor,
                                 left : bool=True,
                                 adjoint : bool=False) -> Tensor

torch._C._linalg.linalg_lu_solve(LU : Tensor,
                                 pivots : Tensor,
                                 B : Tensor,
                                 left : bool=True,
                                 adjoint : bool=False,
                                 out : Tensor) -> Tensor

torch._C._linalg.linalg_matmul(self : Tensor,
                               other : Tensor) -> Tensor

torch._C._linalg.linalg_matmul(self : Tensor,
                               other : Tensor,
                               out : Tensor) -> Tensor

torch._C._linalg.linalg_matrix_exp(self : Tensor) -> Tensor

torch._C._linalg.linalg_matrix_exp(self : Tensor,
                                   out : Tensor) -> Tensor

torch._C._linalg.linalg_matrix_norm(self : Tensor,
                                    ord : number,
                                    dim : List[int]=[-2, -1],
                                    keepdim : bool=False,
                                    dtype : Optional[int]) -> Tensor

torch._C._linalg.linalg_matrix_norm(self : Tensor,
                                    ord : str=fro,
                                    dim : List[int]=[-2, -1],
                                    keepdim : bool=False,
                                    dtype : Optional[int]) -> Tensor

torch._C._linalg.linalg_matrix_norm(self : Tensor,
                                    ord : number,
                                    dim : List[int]=[-2, -1],
                                    keepdim : bool=False,
                                    dtype : Optional[int],
                                    out : Tensor) -> Tensor

torch._C._linalg.linalg_matrix_norm(self : Tensor,
                                    ord : str=fro,
                                    dim : List[int]=[-2, -1],
                                    keepdim : bool=False,
                                    dtype : Optional[int],
                                    out : Tensor) -> Tensor

torch._C._linalg.linalg_matrix_power(self : Tensor,
                                     n : int) -> Tensor

torch._C._linalg.linalg_matrix_power(self : Tensor,
                                     n : int,
                                     out : Tensor) -> Tensor

torch._C._linalg.linalg_matrix_rank(self : Tensor,
                                    tol : float,
                                    hermitian : bool=False) -> Tensor

torch._C._linalg.linalg_matrix_rank(input : Tensor,
                                    tol : Tensor,
                                    hermitian : bool=False) -> Tensor

torch._C._linalg.linalg_matrix_rank(input : Tensor,
                                    atol : Optional[Tensor],
                                    rtol : Optional[Tensor],
                                    hermitian : bool=False) -> Tensor

torch._C._linalg.linalg_matrix_rank(self : Tensor,
                                    atol : Optional[float],
                                    rtol : Optional[float],
                                    hermitian : bool=False) -> Tensor

torch._C._linalg.linalg_matrix_rank(input : Tensor,
                                    atol : Optional[Tensor],
                                    rtol : Optional[Tensor],
                                    hermitian : bool=False,
                                    out : Tensor) -> Tensor

torch._C._linalg.linalg_matrix_rank(self : Tensor,
                                    atol : Optional[float],
                                    rtol : Optional[float],
                                    hermitian : bool=False,
                                    out : Tensor) -> Tensor

torch._C._linalg.linalg_matrix_rank(self : Tensor,
                                    tol : float,
                                    hermitian : bool=False,
                                    out : Tensor) -> Tensor

torch._C._linalg.linalg_matrix_rank(input : Tensor,
                                    tol : Tensor,
                                    hermitian : bool=False,
                                    out : Tensor) -> Tensor

torch._C._linalg.linalg_multi_dot(tensors : List[Tensor]) -> Tensor

torch._C._linalg.linalg_multi_dot(tensors : List[Tensor],
                                  out : Tensor) -> Tensor

torch._C._linalg.linalg_norm(self : Tensor,
                             ord : Optional[number],
                             dim : Optional[List[int]],
                             keepdim : bool=False,
                             dtype : Optional[int]) -> Tensor

torch._C._linalg.linalg_norm(self : Tensor,
                             ord : str,
                             dim : Optional[List[int]],
                             keepdim : bool=False,
                             dtype : Optional[int]) -> Tensor

torch._C._linalg.linalg_norm(self : Tensor,
                             ord : Optional[number],
                             dim : Optional[List[int]],
                             keepdim : bool=False,
                             dtype : Optional[int],
                             out : Tensor) -> Tensor

torch._C._linalg.linalg_norm(self : Tensor,
                             ord : str,
                             dim : Optional[List[int]],
                             keepdim : bool=False,
                             dtype : Optional[int],
                             out : Tensor) -> Tensor

torch._C._linalg.linalg_pinv(self : Tensor,
                             rcond : float,
                             hermitian : bool=False) -> Tensor

torch._C._linalg.linalg_pinv(self : Tensor,
                             atol : Optional[float],
                             rtol : Optional[float],
                             hermitian : bool=False) -> Tensor

torch._C._linalg.linalg_pinv(self : Tensor,
                             atol : Optional[Tensor],
                             rtol : Optional[Tensor],
                             hermitian : bool=False) -> Tensor

torch._C._linalg.linalg_pinv(self : Tensor,
                             atol : Optional[Tensor],
                             rtol : Optional[Tensor],
                             hermitian : bool=False,
                             out : Tensor) -> Tensor

torch._C._linalg.linalg_pinv(self : Tensor,
                             atol : Optional[float],
                             rtol : Optional[float],
                             hermitian : bool=False,
                             out : Tensor) -> Tensor

torch._C._linalg.linalg_pinv(self : Tensor,
                             rcond : float,
                             hermitian : bool=False,
                             out : Tensor) -> Tensor

torch._C._linalg.linalg_pinv(self : Tensor,
                             rcond : Tensor,
                             hermitian : bool=False) -> Tensor

torch._C._linalg.linalg_pinv(self : Tensor,
                             rcond : Tensor,
                             hermitian : bool=False,
                             out : Tensor) -> Tensor

torch._C._linalg.linalg_qr(A : Tensor,
                           mode : str=reduced) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_qr(A : Tensor,
                           mode : str=reduced,
                           Q : Tensor,
                           R : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_slogdet(A : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_slogdet(A : Tensor,
                                sign : Tensor,
                                logabsdet : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_solve(A : Tensor,
                              B : Tensor,
                              left : bool=True) -> Tensor

torch._C._linalg.linalg_solve(A : Tensor,
                              B : Tensor,
                              left : bool=True,
                              out : Tensor) -> Tensor

torch._C._linalg.linalg_solve_ex(A : Tensor,
                                 B : Tensor,
                                 left : bool=True,
                                 check_errors : bool=False) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_solve_ex(A : Tensor,
                                 B : Tensor,
                                 left : bool=True,
                                 check_errors : bool=False,
                                 result : Tensor,
                                 info : Tensor) -> Tuple[Tensor, Tensor]

torch._C._linalg.linalg_solve_triangular(self : Tensor,
                                         B : Tensor,
                                         upper : bool,
                                         left : bool=True,
                                         unitriangular : bool=False) -> Tensor

torch._C._linalg.linalg_solve_triangular(self : Tensor,
                                         B : Tensor,
                                         upper : bool,
                                         left : bool=True,
                                         unitriangular : bool=False,
                                         out : Tensor) -> Tensor

torch._C._linalg.linalg_svd(A : Tensor,
                            full_matrices : bool=True,
                            driver : Optional[str]) -> Tuple[Tensor, Tensor, Tensor]

torch._C._linalg.linalg_svd(A : Tensor,
                            full_matrices : bool=True,
                            driver : Optional[str],
                            U : Tensor,
                            S : Tensor,
                            Vh : Tensor) -> Tuple[Tensor, Tensor, Tensor]

torch._C._linalg.linalg_svdvals(A : Tensor,
                                driver : Optional[str]) -> Tensor

torch._C._linalg.linalg_svdvals(A : Tensor,
                                driver : Optional[str],
                                out : Tensor) -> Tensor

torch._C._linalg.linalg_tensorinv(self : Tensor,
                                  ind : int=2) -> Tensor

torch._C._linalg.linalg_tensorinv(self : Tensor,
                                  ind : int=2,
                                  out : Tensor) -> Tensor

torch._C._linalg.linalg_tensorsolve(self : Tensor,
                                    other : Tensor,
                                    dims : Optional[List[int]]) -> Tensor

torch._C._linalg.linalg_tensorsolve(self : Tensor,
                                    other : Tensor,
                                    dims : Optional[List[int]],
                                    out : Tensor) -> Tensor

torch._C._linalg.linalg_vander(x : Tensor,
                               N : Optional[int]) -> Tensor

torch._C._linalg.linalg_vecdot(x : Tensor,
                               y : Tensor,
                               dim : int=-1) -> Tensor

torch._C._linalg.linalg_vecdot(x : Tensor,
                               y : Tensor,
                               dim : int=-1,
                               out : Tensor) -> Tensor

torch._C._linalg.linalg_vector_norm(self : Tensor,
                                    ord : number=2,
                                    dim : Optional[List[int]],
                                    keepdim : bool=False,
                                    dtype : Optional[int]) -> Tensor

torch._C._linalg.linalg_vector_norm(self : Tensor,
                                    ord : number=2,
                                    dim : Optional[List[int]],
                                    keepdim : bool=False,
                                    dtype : Optional[int],
                                    out : Tensor) -> Tensor

torch._C._nested.nested_to_padded_tensor(self : Tensor,
                                         padding : float,
                                         output_size : Optional[List[int]]) -> Tensor

torch._C._sparse.sparse_sampled_addmm(self : Tensor,
                                      mat1 : Tensor,
                                      mat2 : Tensor,
                                      beta : number=1,
                                      alpha : number=1,
                                      out : Tensor) -> Tensor

torch._C._sparse.sparse_sampled_addmm(self : Tensor,
                                      mat1 : Tensor,
                                      mat2 : Tensor,
                                      beta : number=1,
                                      alpha : number=1) -> Tensor

torch._C._special.special_airy_ai(x : Tensor) -> Tensor

torch._C._special.special_airy_ai(x : Tensor,
                                  out : Tensor) -> Tensor

torch._C._special.special_bessel_j0(self : Tensor) -> Tensor

torch._C._special.special_bessel_j0(self : Tensor,
                                    out : Tensor) -> Tensor

torch._C._special.special_bessel_j1(self : Tensor) -> Tensor

torch._C._special.special_bessel_j1(self : Tensor,
                                    out : Tensor) -> Tensor

torch._C._special.special_bessel_y0(self : Tensor) -> Tensor

torch._C._special.special_bessel_y0(self : Tensor,
                                    out : Tensor) -> Tensor

torch._C._special.special_bessel_y1(self : Tensor) -> Tensor

torch._C._special.special_bessel_y1(self : Tensor,
                                    out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_t(x : Tensor,
                                                 n : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_t(x : Tensor,
                                                 n : Tensor,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_t(x : number,
                                                 n : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_t(x : number,
                                                 n : Tensor,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_t(x : Tensor,
                                                 n : number) -> Tensor

torch._C._special.special_chebyshev_polynomial_t(x : Tensor,
                                                 n : number,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_u(x : Tensor,
                                                 n : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_u(x : Tensor,
                                                 n : Tensor,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_u(x : number,
                                                 n : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_u(x : number,
                                                 n : Tensor,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_u(x : Tensor,
                                                 n : number) -> Tensor

torch._C._special.special_chebyshev_polynomial_u(x : Tensor,
                                                 n : number,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_v(x : Tensor,
                                                 n : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_v(x : Tensor,
                                                 n : Tensor,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_v(x : number,
                                                 n : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_v(x : number,
                                                 n : Tensor,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_v(x : Tensor,
                                                 n : number) -> Tensor

torch._C._special.special_chebyshev_polynomial_v(x : Tensor,
                                                 n : number,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_w(x : Tensor,
                                                 n : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_w(x : Tensor,
                                                 n : Tensor,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_w(x : number,
                                                 n : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_w(x : number,
                                                 n : Tensor,
                                                 out : Tensor) -> Tensor

torch._C._special.special_chebyshev_polynomial_w(x : Tensor,
                                                 n : number) -> Tensor

torch._C._special.special_chebyshev_polynomial_w(x : Tensor,
                                                 n : number,
                                                 out : Tensor) -> Tensor

torch._C._special.special_digamma(self : Tensor) -> Tensor

torch._C._special.special_digamma(self : Tensor,
                                  out : Tensor) -> Tensor

torch._C._special.special_entr(self : Tensor) -> Tensor

torch._C._special.special_entr(self : Tensor,
                               out : Tensor) -> Tensor

torch._C._special.special_erf(self : Tensor) -> Tensor

torch._C._special.special_erf(self : Tensor,
                              out : Tensor) -> Tensor

torch._C._special.special_erfc(self : Tensor) -> Tensor

torch._C._special.special_erfc(self : Tensor,
                               out : Tensor) -> Tensor

torch._C._special.special_erfcx(self : Tensor) -> Tensor

torch._C._special.special_erfcx(self : Tensor,
                                out : Tensor) -> Tensor

torch._C._special.special_erfinv(self : Tensor) -> Tensor

torch._C._special.special_erfinv(self : Tensor,
                                 out : Tensor) -> Tensor

torch._C._special.special_exp2(self : Tensor) -> Tensor

torch._C._special.special_exp2(self : Tensor,
                               out : Tensor) -> Tensor

torch._C._special.special_expit(self : Tensor) -> Tensor

torch._C._special.special_expit(self : Tensor,
                                out : Tensor) -> Tensor

torch._C._special.special_expm1(self : Tensor) -> Tensor

torch._C._special.special_expm1(self : Tensor,
                                out : Tensor) -> Tensor

torch._C._special.special_gammainc(self : Tensor,
                                   other : Tensor) -> Tensor

torch._C._special.special_gammainc(self : Tensor,
                                   other : Tensor,
                                   out : Tensor) -> Tensor

torch._C._special.special_gammaincc(self : Tensor,
                                    other : Tensor) -> Tensor

torch._C._special.special_gammaincc(self : Tensor,
                                    other : Tensor,
                                    out : Tensor) -> Tensor

torch._C._special.special_gammaln(self : Tensor) -> Tensor

torch._C._special.special_gammaln(self : Tensor,
                                  out : Tensor) -> Tensor

torch._C._special.special_hermite_polynomial_h(x : Tensor,
                                               n : Tensor) -> Tensor

torch._C._special.special_hermite_polynomial_h(x : Tensor,
                                               n : Tensor,
                                               out : Tensor) -> Tensor

torch._C._special.special_hermite_polynomial_h(x : number,
                                               n : Tensor) -> Tensor

torch._C._special.special_hermite_polynomial_h(x : number,
                                               n : Tensor,
                                               out : Tensor) -> Tensor

torch._C._special.special_hermite_polynomial_h(x : Tensor,
                                               n : number) -> Tensor

torch._C._special.special_hermite_polynomial_h(x : Tensor,
                                               n : number,
                                               out : Tensor) -> Tensor

torch._C._special.special_hermite_polynomial_he(x : Tensor,
                                                n : Tensor) -> Tensor

torch._C._special.special_hermite_polynomial_he(x : Tensor,
                                                n : Tensor,
                                                out : Tensor) -> Tensor

torch._C._special.special_hermite_polynomial_he(x : number,
                                                n : Tensor) -> Tensor

torch._C._special.special_hermite_polynomial_he(x : number,
                                                n : Tensor,
                                                out : Tensor) -> Tensor

torch._C._special.special_hermite_polynomial_he(x : Tensor,
                                                n : number) -> Tensor

torch._C._special.special_hermite_polynomial_he(x : Tensor,
                                                n : number,
                                                out : Tensor) -> Tensor

torch._C._special.special_i0(self : Tensor) -> Tensor

torch._C._special.special_i0(self : Tensor,
                             out : Tensor) -> Tensor

torch._C._special.special_i0e(self : Tensor) -> Tensor

torch._C._special.special_i0e(self : Tensor,
                              out : Tensor) -> Tensor

torch._C._special.special_i1(self : Tensor) -> Tensor

torch._C._special.special_i1(self : Tensor,
                             out : Tensor) -> Tensor

torch._C._special.special_i1e(self : Tensor) -> Tensor

torch._C._special.special_i1e(self : Tensor,
                              out : Tensor) -> Tensor

torch._C._special.special_laguerre_polynomial_l(x : Tensor,
                                                n : Tensor) -> Tensor

torch._C._special.special_laguerre_polynomial_l(x : Tensor,
                                                n : Tensor,
                                                out : Tensor) -> Tensor

torch._C._special.special_laguerre_polynomial_l(x : number,
                                                n : Tensor) -> Tensor

torch._C._special.special_laguerre_polynomial_l(x : number,
                                                n : Tensor,
                                                out : Tensor) -> Tensor

torch._C._special.special_laguerre_polynomial_l(x : Tensor,
                                                n : number) -> Tensor

torch._C._special.special_laguerre_polynomial_l(x : Tensor,
                                                n : number,
                                                out : Tensor) -> Tensor

torch._C._special.special_legendre_polynomial_p(x : Tensor,
                                                n : Tensor) -> Tensor

torch._C._special.special_legendre_polynomial_p(x : Tensor,
                                                n : Tensor,
                                                out : Tensor) -> Tensor

torch._C._special.special_legendre_polynomial_p(x : number,
                                                n : Tensor) -> Tensor

torch._C._special.special_legendre_polynomial_p(x : number,
                                                n : Tensor,
                                                out : Tensor) -> Tensor

torch._C._special.special_legendre_polynomial_p(x : Tensor,
                                                n : number) -> Tensor

torch._C._special.special_legendre_polynomial_p(x : Tensor,
                                                n : number,
                                                out : Tensor) -> Tensor

torch._C._special.special_log1p(self : Tensor) -> Tensor

torch._C._special.special_log1p(self : Tensor,
                                out : Tensor) -> Tensor

torch._C._special.special_log_ndtr(self : Tensor) -> Tensor

torch._C._special.special_log_ndtr(self : Tensor,
                                   out : Tensor) -> Tensor

torch._C._special.special_log_softmax(self : Tensor,
                                      dim : int,
                                      dtype : Optional[int]) -> Tensor

torch._C._special.special_logit(self : Tensor,
                                eps : Optional[float]) -> Tensor

torch._C._special.special_logit(self : Tensor,
                                eps : Optional[float],
                                out : Tensor) -> Tensor

torch._C._special.special_logsumexp(self : Tensor,
                                    dim : List[int],
                                    keepdim : bool=False) -> Tensor

torch._C._special.special_logsumexp(self : Tensor,
                                    dim : List[int],
                                    keepdim : bool=False,
                                    out : Tensor) -> Tensor

torch._C._special.special_modified_bessel_i0(self : Tensor) -> Tensor

torch._C._special.special_modified_bessel_i0(self : Tensor,
                                             out : Tensor) -> Tensor

torch._C._special.special_modified_bessel_i1(self : Tensor) -> Tensor

torch._C._special.special_modified_bessel_i1(self : Tensor,
                                             out : Tensor) -> Tensor

torch._C._special.special_modified_bessel_k0(self : Tensor) -> Tensor

torch._C._special.special_modified_bessel_k0(self : Tensor,
                                             out : Tensor) -> Tensor

torch._C._special.special_modified_bessel_k1(self : Tensor) -> Tensor

torch._C._special.special_modified_bessel_k1(self : Tensor,
                                             out : Tensor) -> Tensor

torch._C._special.special_multigammaln(self : Tensor,
                                       p : int) -> Tensor

torch._C._special.special_multigammaln(self : Tensor,
                                       p : int,
                                       out : Tensor) -> Tensor

torch._C._special.special_ndtr(self : Tensor) -> Tensor

torch._C._special.special_ndtr(self : Tensor,
                               out : Tensor) -> Tensor

torch._C._special.special_ndtri(self : Tensor) -> Tensor

torch._C._special.special_ndtri(self : Tensor,
                                out : Tensor) -> Tensor

torch._C._special.special_polygamma(n : int,
                                    self : Tensor) -> Tensor

torch._C._special.special_polygamma(n : int,
                                    self : Tensor,
                                    out : Tensor) -> Tensor

torch._C._special.special_psi(self : Tensor) -> Tensor

torch._C._special.special_psi(self : Tensor,
                              out : Tensor) -> Tensor

torch._C._special.special_round(self : Tensor,
                                decimals : int=0) -> Tensor

torch._C._special.special_round(self : Tensor,
                                decimals : int=0,
                                out : Tensor) -> Tensor

torch._C._special.special_scaled_modified_bessel_k0(x : Tensor) -> Tensor

torch._C._special.special_scaled_modified_bessel_k0(x : Tensor,
                                                    out : Tensor) -> Tensor

torch._C._special.special_scaled_modified_bessel_k1(x : Tensor) -> Tensor

torch._C._special.special_scaled_modified_bessel_k1(x : Tensor,
                                                    out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_t(x : Tensor,
                                                         n : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_t(x : Tensor,
                                                         n : Tensor,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_t(x : number,
                                                         n : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_t(x : number,
                                                         n : Tensor,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_t(x : Tensor,
                                                         n : number) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_t(x : Tensor,
                                                         n : number,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_u(x : Tensor,
                                                         n : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_u(x : Tensor,
                                                         n : Tensor,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_u(x : number,
                                                         n : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_u(x : number,
                                                         n : Tensor,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_u(x : Tensor,
                                                         n : number) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_u(x : Tensor,
                                                         n : number,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_v(x : Tensor,
                                                         n : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_v(x : Tensor,
                                                         n : Tensor,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_v(x : number,
                                                         n : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_v(x : number,
                                                         n : Tensor,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_v(x : Tensor,
                                                         n : number) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_v(x : Tensor,
                                                         n : number,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_w(x : Tensor,
                                                         n : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_w(x : Tensor,
                                                         n : Tensor,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_w(x : number,
                                                         n : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_w(x : number,
                                                         n : Tensor,
                                                         out : Tensor) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_w(x : Tensor,
                                                         n : number) -> Tensor

torch._C._special.special_shifted_chebyshev_polynomial_w(x : Tensor,
                                                         n : number,
                                                         out : Tensor) -> Tensor

torch._C._special.special_sinc(self : Tensor) -> Tensor

torch._C._special.special_sinc(self : Tensor,
                               out : Tensor) -> Tensor

torch._C._special.special_softmax(self : Tensor,
                                  dim : int,
                                  dtype : Optional[int]) -> Tensor

torch._C._special.special_spherical_bessel_j0(x : Tensor) -> Tensor

torch._C._special.special_spherical_bessel_j0(x : Tensor,
                                              out : Tensor) -> Tensor

torch._C._special.special_xlog1py(self : Tensor,
                                  other : Tensor) -> Tensor

torch._C._special.special_xlog1py(self : Tensor,
                                  other : number) -> Tensor

torch._C._special.special_xlog1py(self : number,
                                  other : Tensor) -> Tensor

torch._C._special.special_xlog1py(self : Tensor,
                                  other : Tensor,
                                  out : Tensor) -> Tensor

torch._C._special.special_xlog1py(self : number,
                                  other : Tensor,
                                  out : Tensor) -> Tensor

torch._C._special.special_xlog1py(self : Tensor,
                                  other : number,
                                  out : Tensor) -> Tensor

torch._C._special.special_xlogy(self : Tensor,
                                other : Tensor) -> Tensor

torch._C._special.special_xlogy(self : Tensor,
                                other : number) -> Tensor

torch._C._special.special_xlogy(self : number,
                                other : Tensor) -> Tensor

torch._C._special.special_xlogy(self : Tensor,
                                other : Tensor,
                                out : Tensor) -> Tensor

torch._C._special.special_xlogy(self : number,
                                other : Tensor,
                                out : Tensor) -> Tensor

torch._C._special.special_xlogy(self : Tensor,
                                other : number,
                                out : Tensor) -> Tensor

torch._C._special.special_zeta(self : Tensor,
                               other : Tensor) -> Tensor

torch._C._special.special_zeta(self : Tensor,
                               other : number) -> Tensor

torch._C._special.special_zeta(self : number,
                               other : Tensor) -> Tensor

torch._C._special.special_zeta(self : Tensor,
                               other : Tensor,
                               out : Tensor) -> Tensor

torch._C._special.special_zeta(self : number,
                               other : Tensor,
                               out : Tensor) -> Tensor

torch._C._special.special_zeta(self : Tensor,
                               other : number,
                               out : Tensor) -> Tensor

TorchScript 內建函式

collections.OrderedDict() -> Dict[str, Tensor]

collections.OrderedDict(inputs : List[Tuple[str, tVal]]) -> Dict[str, tVal]

collections.OrderedDict(self : Dict[str, t]) -> Dict[str, t]

collections.OrderedDict(inputs : List[Tuple[int, tVal]]) -> Dict[int, tVal]

collections.OrderedDict(self : Dict[int, t]) -> Dict[int, t]

collections.OrderedDict(inputs : List[Tuple[bool, tVal]]) -> Dict[bool, tVal]

collections.OrderedDict(self : Dict[bool, t]) -> Dict[bool, t]

collections.OrderedDict(inputs : List[Tuple[float, tVal]]) -> Dict[float, tVal]

collections.OrderedDict(self : Dict[float, t]) -> Dict[float, t]

collections.OrderedDict(inputs : List[Tuple[complex, tVal]]) -> Dict[complex, tVal]

collections.OrderedDict(self : Dict[complex, t]) -> Dict[complex, t]

collections.OrderedDict(inputs : List[Tuple[Tensor, tVal]]) -> Dict[Tensor, tVal]

collections.OrderedDict(self : Dict[Tensor, t]) -> Dict[Tensor, t]

builtins.dict() -> Dict[str, Tensor]

builtins.dict(inputs : List[Tuple[str, tVal]]) -> Dict[str, tVal]

builtins.dict(self : Dict[str, t]) -> Dict[str, t]

builtins.dict(inputs : List[Tuple[int, tVal]]) -> Dict[int, tVal]

builtins.dict(self : Dict[int, t]) -> Dict[int, t]

builtins.dict(inputs : List[Tuple[bool, tVal]]) -> Dict[bool, tVal]

builtins.dict(self : Dict[bool, t]) -> Dict[bool, t]

builtins.dict(inputs : List[Tuple[float, tVal]]) -> Dict[float, tVal]

builtins.dict(self : Dict[float, t]) -> Dict[float, t]

builtins.dict(inputs : List[Tuple[complex, tVal]]) -> Dict[complex, tVal]

builtins.dict(self : Dict[complex, t]) -> Dict[complex, t]

builtins.dict(inputs : List[Tuple[Tensor, tVal]]) -> Dict[Tensor, tVal]

builtins.dict(self : Dict[Tensor, t]) -> Dict[Tensor, t]

torch.backends.cudnn.is_acceptable(self : Tensor) -> bool

cmath.isnan(self : Tensor) -> Tensor

cmath.isnan(self : Tensor,
            out : Tensor) -> Tensor

cmath.isnan(a : float) -> bool

cmath.isnan(a : complex) -> bool

cmath.isfinite(self : Tensor) -> Tensor

cmath.isfinite(a : float) -> bool

cmath.isfinite(a : complex) -> bool

cmath.isinf(self : Tensor) -> Tensor

cmath.isinf(self : Tensor,
            out : Tensor) -> Tensor

cmath.isinf(a : float) -> bool

cmath.isinf(a : complex) -> bool

cmath.phase(self : Tensor) -> Tensor

cmath.phase(self : Tensor,
            out : Tensor) -> Tensor

cmath.phase(a : int) -> float

cmath.phase(a : float) -> float

cmath.phase(a : complex) -> float

cmath.phase(a : number) -> number

cmath.rect(abs : Tensor,
           angle : Tensor) -> Tensor

cmath.rect(abs : Tensor,
           angle : Tensor,
           out : Tensor) -> Tensor

cmath.rect(a : int,
           b : int) -> complex

cmath.rect(a : float,
           b : float) -> complex

cmath.rect(a : int,
           b : float) -> complex

cmath.rect(a : float,
           b : int) -> complex

cmath.rect(a : number,
           b : number) -> number

cmath.log(self : Tensor) -> Tensor

cmath.log(self : Tensor,
          out : Tensor) -> Tensor

cmath.log(a : int) -> float

cmath.log(a : float) -> float

cmath.log(a : complex) -> complex

cmath.log(a : number) -> number

cmath.log(a : int,
          b : int) -> float

cmath.log(a : float,
          b : float) -> float

cmath.log(a : complex,
          b : complex) -> complex

cmath.log(a : int,
          b : float) -> float

cmath.log(a : float,
          b : int) -> float

cmath.log(a : int,
          b : complex) -> complex

cmath.log(a : complex,
          b : int) -> complex

cmath.log(a : float,
          b : complex) -> complex

cmath.log(a : complex,
          b : float) -> complex

cmath.log(a : number,
          b : number) -> float

cmath.log10(self : Tensor) -> Tensor

cmath.log10(self : Tensor,
            out : Tensor) -> Tensor

cmath.log10(a : int) -> float

cmath.log10(a : float) -> float

cmath.log10(a : complex) -> complex

cmath.log10(a : number) -> number

cmath.sqrt(self : Tensor) -> Tensor

cmath.sqrt(self : Tensor,
           out : Tensor) -> Tensor

cmath.sqrt(a : int) -> float

cmath.sqrt(a : float) -> float

cmath.sqrt(a : complex) -> complex

cmath.sqrt(a : number) -> number

cmath.exp(self : Tensor) -> Tensor

cmath.exp(self : Tensor,
          out : Tensor) -> Tensor

cmath.exp(a : int) -> float

cmath.exp(a : float) -> float

cmath.exp(a : complex) -> complex

cmath.exp(a : number) -> number

cmath.sin(self : Tensor) -> Tensor

cmath.sin(self : Tensor,
          out : Tensor) -> Tensor

cmath.sin(a : int) -> float

cmath.sin(a : float) -> float

cmath.sin(a : complex) -> complex

cmath.sin(a : number) -> number

cmath.tan(self : Tensor) -> Tensor

cmath.tan(self : Tensor,
          out : Tensor) -> Tensor

cmath.tan(a : int) -> float

cmath.tan(a : float) -> float

cmath.tan(a : complex) -> complex

cmath.tan(a : number) -> number

cmath.cos(self : Tensor) -> Tensor

cmath.cos(self : Tensor,
          out : Tensor) -> Tensor

cmath.cos(a : int) -> float

cmath.cos(a : float) -> float

cmath.cos(a : complex) -> complex

cmath.cos(a : number) -> number

cmath.asin(self : Tensor) -> Tensor

cmath.asin(self : Tensor,
           out : Tensor) -> Tensor

cmath.asin(a : int) -> float

cmath.asin(a : float) -> float

cmath.asin(a : complex) -> complex

cmath.asin(a : number) -> number

cmath.acos(self : Tensor) -> Tensor

cmath.acos(self : Tensor,
           out : Tensor) -> Tensor

cmath.acos(a : int) -> float

cmath.acos(a : float) -> float

cmath.acos(a : complex) -> complex

cmath.acos(a : number) -> number

cmath.atan(self : Tensor) -> Tensor

cmath.atan(self : Tensor,
           out : Tensor) -> Tensor

cmath.atan(a : int) -> float

cmath.atan(a : float) -> float

cmath.atan(a : complex) -> complex

cmath.atan(a : number) -> number

cmath.sinh(self : Tensor) -> Tensor

cmath.sinh(self : Tensor,
           out : Tensor) -> Tensor

cmath.sinh(a : int) -> float

cmath.sinh(a : float) -> float

cmath.sinh(a : complex) -> complex

cmath.sinh(a : number) -> number

cmath.cosh(self : Tensor) -> Tensor

cmath.cosh(self : Tensor,
           out : Tensor) -> Tensor

cmath.cosh(a : int) -> float

cmath.cosh(a : float) -> float

cmath.cosh(a : complex) -> complex

cmath.cosh(a : number) -> number

cmath.tanh(self : Tensor) -> Tensor

cmath.tanh(self : Tensor,
           out : Tensor) -> Tensor

cmath.tanh(a : int) -> float

cmath.tanh(a : float) -> float

cmath.tanh(a : complex) -> complex

cmath.tanh(a : number) -> number

cmath.asinh(self : Tensor) -> Tensor

cmath.asinh(self : Tensor,
            out : Tensor) -> Tensor

cmath.asinh(a : int) -> float

cmath.asinh(a : float) -> float

cmath.asinh(a : complex) -> complex

cmath.asinh(a : number) -> number

cmath.acosh(self : Tensor) -> Tensor

cmath.acosh(self : Tensor,
            out : Tensor) -> Tensor

cmath.acosh(a : int) -> float

cmath.acosh(a : float) -> float

cmath.acosh(a : complex) -> complex

cmath.acosh(a : number) -> number

cmath.atanh(self : Tensor) -> Tensor

cmath.atanh(self : Tensor,
            out : Tensor) -> Tensor

cmath.atanh(a : int) -> float

cmath.atanh(a : float) -> float

cmath.atanh(a : complex) -> complex

cmath.atanh(a : number) -> number

torch.autograd.grad(outputs : List[Tensor],
                    inputs : List[Tensor],
                    grad_outputs : Optional[List[Optional[Tensor]]],
                    retain_graph : Optional[bool],
                    create_graph : bool=False,
                    allow_unused : bool=False) -> List[Optional[Tensor]]

torch.autograd.backward(self : Tensor,
                        gradient : Optional[Tensor],
                        retain_graph : Optional[bool],
                        create_graph : bool=False) -> Tuple[]

torch.autograd.backward(tensors : List[Tensor],
                        grad_tensors : Optional[List[Optional[Tensor]]],
                        retain_graph : Optional[bool],
                        create_graph : bool=False) -> Tuple[]

torch.Size(sizes : List[int]) -> List[int]

torch.functional.align_tensors(tensors : List[Tensor]) -> List[Tensor]

torch.functional.atleast_1d(self : Tensor) -> Tensor

torch.functional.atleast_1d(tensors : List[Tensor]) -> List[Tensor]

torch.functional.atleast_2d(self : Tensor) -> Tensor

torch.functional.atleast_2d(tensors : List[Tensor]) -> List[Tensor]

torch.functional.atleast_3d(self : Tensor) -> Tensor

torch.functional.atleast_3d(tensors : List[Tensor]) -> List[Tensor]

torch.functional.block_diag(tensors : List[Tensor]) -> Tensor

torch.functional.block_diag(tensors : List[Tensor],
                            out : Tensor) -> Tensor

torch.functional.broadcast_tensors(tensors : List[Tensor]) -> List[Tensor]

torch.functional.cartesian_prod(tensors : List[Tensor]) -> Tensor

torch.functional.chain_matmul(matrices : List[Tensor]) -> Tensor

torch.functional.chain_matmul(matrices : List[Tensor],
                              out : Tensor) -> Tensor

torch.device(a : str) -> Device

torch.device(type : str,
             index : int) -> Device

torch.functional.einsum(equation : str,
                        tensors : List[Tensor],
                        path : Optional[List[int]]) -> Tensor

torch.functional.einsum(a : Tensor) -> Tensor

torch.get_autocast_dtype(device_type : str) -> int

torch.random.initial_seed(self : Generator) -> int

torch.is_autocast_cpu_enabled() -> bool

torch.is_autocast_enabled() -> bool

torch.is_grad_enabled() -> bool

torch.random.manual_seed(seed : int) -> Tuple[]

torch.random.manual_seed(self : Generator,
                         seed : int) -> Generator

torch.functional.meshgrid(tensors : List[Tensor]) -> List[Tensor]

torch.functional.meshgrid(tensors : List[Tensor],
                          indexing : str) -> List[Tensor]

torch.qscheme(self : Tensor) -> QScheme

torch.serialization.save(item : t,
                         filename : str) -> Tuple[]

torch.random.seed(self : Generator) -> int

torch.autograd.grad_mode.set_grad_enabled(val : bool) -> Tuple[]

torch.functional.split(self : Tensor,
                       split_size : int,
                       dim : int=0) -> List[Tensor]

torch.functional.split(self : Tensor,
                       split_size : List[int],
                       dim : int=0) -> List[Tensor]

torch.functional.split(self : str,
                       separator : Optional[str],
                       max : int=-1) -> List[str]

torch.functional.split(self : Tensor,
                       split_sizes : List[int],
                       dim : int=0) -> List[Tensor]

torch.wait(self : Future[t]) -> t

Python 內建函式

下表中的函式受支援,但沒有靜態 schema

函式

注意

print

列印任何值

tuple

列表不能用此方法轉換為元組,因為其大小非靜態已知

getattr

屬性名必須是字串常量

hasattr

屬性名必須是字串常量

isinstance

結果為靜態

range

只能在 for 迴圈中用作迭代器

zip

引數必須是可迭代物件。詳細資訊請參閱 可迭代物件

enumerate

引數必須是可迭代物件。詳細資訊請參閱 可迭代物件

以下函式將在 TorchScript 類上使用相應的魔術方法

函式

魔術方法

complex

__complex__

float

__float__

int

__int__

bool

__bool__

str

__str__

len

__len__

hex

__hex__

oct

__oct__

這些內建函式使用 schema

float(a : Tensor) -> float
float(a : number) -> float
float(a : int) -> float
float(a : bool) -> float
float(a : str) -> float

complex(a : number) -> complex
complex(a : Tensor,
        b : Tensor) -> complex
complex(x : int,
        y : bool) -> complex
complex(x : bool,
        y : int) -> complex
complex(x : float,
        y : bool) -> complex
complex(x : bool,
        y : float) -> complex
complex(x : float,
        y : int) -> complex
complex(x : int,
        y : float) -> complex
complex(x : int,
        y : int) -> complex
complex(x : bool,
        y : bool) -> complex
complex(x : float,
        y : float) -> complex
complex(x : Tensor,
        y : float) -> complex
complex(x : float,
        y : Tensor) -> complex
complex(x : Tensor,
        y : int) -> complex
complex(x : int,
        y : Tensor) -> complex
complex(x : Tensor,
        y : bool) -> complex
complex(x : bool,
        y : Tensor) -> complex

int(a : Tensor) -> int
int(a : bool) -> int
int(a : float) -> int
int(a : number) -> int
int(a : str) -> int

bool(a : Tensor) -> bool
bool(a : int) -> bool
bool(a : float) -> bool

str(elem : t) -> str

len(a : List[t]) -> int
len(t : Tensor) -> int
len(s : str) -> int
len(self : Dict[str, t]) -> int
len(self : Dict[int, t]) -> int
len(self : Dict[bool, t]) -> int
len(self : Dict[float, t]) -> int
len(self : Dict[complex, t]) -> int
len(self : Dict[Tensor, t]) -> int
len(a : List[Any]) -> int

hex(i : int) -> str

oct(i : int) -> str

round(self : Tensor) -> Tensor
round(self : Tensor,
      decimals : int) -> Tensor
round(self : Tensor,
      out : Tensor) -> Tensor
round(self : Tensor,
      decimals : int,
      out : Tensor) -> Tensor
round(a : int) -> float
round(a : float) -> float
round(a : number) -> number

hash(value : t) -> int

min(a : int,
    b : int) -> int
min(a : float,
    b : float) -> float
min(a : int,
    b : float) -> float
min(a : float,
    b : int) -> float
min(a : number,
    b : number) -> number
min(l : List[int],
    r : List[int]) -> List[int]
min(self : List[int]) -> int
min(l : List[float],
    r : List[float]) -> List[float]
min(self : List[float]) -> float
min(l : List[bool],
    r : List[bool]) -> List[bool]
min(self : List[bool]) -> bool

max(a : int,
    b : int) -> int
max(a : float,
    b : float) -> float
max(a : int,
    b : float) -> float
max(a : float,
    b : int) -> float
max(a : number,
    b : number) -> number
max(l : List[int],
    r : List[int]) -> List[int]
max(self : List[int]) -> int
max(l : List[float],
    r : List[float]) -> List[float]
max(self : List[float]) -> float
max(l : List[bool],
    r : List[bool]) -> List[bool]
max(self : List[bool]) -> bool

abs(a : int) -> int
abs(a : float) -> float
abs(a : complex) -> float
abs(a : number) -> number
abs(x : Tensor) -> Tensor

all(self : Tensor) -> Tensor
all(self : Tensor,
    dim : int,
    keepdim : bool=False) -> Tensor
all(self : Tensor,
    dim : Optional[List[int]],
    keepdim : bool=False) -> Tensor
all(self : Tensor,
    dim : int,
    keepdim : bool=False,
    out : Tensor) -> Tensor
all(self : Tensor,
    dim : Optional[List[int]],
    keepdim : bool=False,
    out : Tensor) -> Tensor
all(self : Tensor,
    out : Tensor) -> Tensor
all(self : Tensor,
    dim : str,
    keepdim : bool=False) -> Tensor
all(self : Tensor,
    dim : str,
    keepdim : bool=False,
    out : Tensor) -> Tensor
all(self : List[int]) -> bool
all(self : List[float]) -> bool
all(self : List[bool]) -> bool

divmod(x : int,
       y : int) -> Tuple[int, int]
divmod(x : float,
       y : float) -> Tuple[float, float]
divmod(x : int,
       y : float) -> Tuple[float, float]
divmod(x : float,
       y : int) -> Tuple[float, float]

list(t : str) -> List[str]
list(l : List[t]) -> List[t]

ord(string : str) -> int

chr(i : int) -> str

bin(i : int) -> str

sorted(input : List[int]) -> List[int]
sorted(input : List[float]) -> List[float]
sorted(input : List[Tensor]) -> List[Tensor]
sorted(input : List[bool]) -> List[bool]
sorted(input : List[str]) -> List[str]
sorted(self : List[t]) -> List[t]

math 模組

aten::ceil.int(int a) -> int

aten::ceil.float(float a) -> int

aten::ceil.Scalar(Scalar a) -> Scalar

aten::copysign.int(int a, int b) -> float

aten::copysign.float(float a, float b) -> float

aten::copysign.int_float(int a, float b) -> float

aten::copysign.float_int(float a, int b) -> float

aten::copysign(Scalar a, Scalar b) -> float

aten::erf.int(int a) -> float

aten::erf.float(float a) -> float

aten::erf.Scalar(Scalar a) -> Scalar

aten::erfc.int(int a) -> float

aten::erfc.float(float a) -> float

aten::erfc.Scalar(Scalar a) -> Scalar

aten::exp.int(int a) -> float

aten::exp.float(float a) -> float

aten::exp.complex(complex a) -> complex

aten::exp.Scalar(Scalar a) -> Scalar

aten::expm1.int(int a) -> float

aten::expm1.float(float a) -> float

aten::expm1.Scalar(Scalar a) -> Scalar

aten::fabs.int(int a) -> float

aten::fabs.float(float a) -> float

aten::fabs.Scalar(Scalar a) -> Scalar

aten::floor.int(int a) -> int

aten::floor.float(float a) -> int

aten::floor.Scalar(Scalar a) -> Scalar

aten::gamma.int(int a) -> float

aten::gamma.float(float a) -> float

aten::gamma.Scalar(Scalar a) -> Scalar

aten::lgamma.int(int a) -> float

aten::lgamma.float(float a) -> float

aten::lgamma.Scalar(Scalar a) -> Scalar

aten::log.int(int a) -> float

aten::log.float(float a) -> float

aten::log.complex(complex a) -> complex

aten::log.Scalar(Scalar a) -> Scalar

aten::log.int_int(int a, int b) -> float

aten::log.float_float(float a, float b) -> float

aten::log.complex_complex(complex a, complex b) -> complex

aten::log.int_float(int a, float b) -> float

aten::log.float_int(float a, int b) -> float

aten::log.int_complex(int a, complex b) -> complex

aten::log.complex_int(complex a, int b) -> complex

aten::log.float_complex(float a, complex b) -> complex

aten::log.complex_float(complex a, float b) -> complex

aten::log.Scalar_Scalar(Scalar a, Scalar b) -> float

aten::log10.int(int a) -> float

aten::log10.float(float a) -> float

aten::log10.complex(complex a) -> complex

aten::log10.Scalar(Scalar a) -> Scalar

aten::log1p.int(int a) -> float

aten::log1p.float(float a) -> float

aten::log1p.Scalar(Scalar a) -> Scalar

aten::pow.int(int a, int b) -> float

aten::pow.complex(complex a, complex b) -> complex

aten::pow.float(float a, float b) -> float

aten::pow.int_float(int a, float b) -> float

aten::pow.float_int(float a, int b) -> float

aten::pow.float_complex(float a, complex b) -> complex

aten::pow.complex_float(complex a, float b) -> complex

aten::pow.Scalar_Scalar(Scalar a, Scalar b) -> float

aten::pow.int_to_int(int a, int b) -> int

aten::sqrt.int(int a) -> float

aten::sqrt.float(float a) -> float

aten::sqrt.complex(complex a) -> complex

aten::sqrt.Scalar(Scalar a) -> Scalar

aten::isnan.float(float a) -> bool

aten::isnan.complex(complex a) -> bool

aten::asinh.int(int a) -> float

aten::asinh.float(float a) -> float

aten::asinh.complex(complex a) -> complex

aten::asinh.Scalar(Scalar a) -> Scalar

aten::atanh.int(int a) -> float

aten::atanh.float(float a) -> float

aten::atanh.complex(complex a) -> complex

aten::atanh.Scalar(Scalar a) -> Scalar

aten::cosh.int(int a) -> float

aten::cosh.float(float a) -> float

aten::cosh.complex(complex a) -> complex

aten::cosh.Scalar(Scalar a) -> Scalar

aten::sinh.int(int a) -> float

aten::sinh.float(float a) -> float

aten::sinh.complex(complex a) -> complex

aten::sinh.Scalar(Scalar a) -> Scalar

aten::tanh.int(int a) -> float

aten::tanh.float(float a) -> float

aten::tanh.complex(complex a) -> complex

aten::tanh.Scalar(Scalar a) -> Scalar

aten::acos.int(int a) -> float

aten::acos.float(float a) -> float

aten::acos.complex(complex a) -> complex

aten::acos.Scalar(Scalar a) -> Scalar

aten::asin.int(int a) -> float

aten::asin.float(float a) -> float

aten::asin.complex(complex a) -> complex

aten::asin.Scalar(Scalar a) -> Scalar

aten::atan.int(int a) -> float

aten::atan.float(float a) -> float

aten::atan.complex(complex a) -> complex

aten::atan.Scalar(Scalar a) -> Scalar

aten::atan2.int(int a, int b) -> float

aten::atan2.float(float a, float b) -> float

aten::atan2.int_float(int a, float b) -> float

aten::atan2.float_int(float a, int b) -> float

aten::atan2.Scalar_Scalar(Scalar a, Scalar b) -> float

aten::cos.int(int a) -> float

aten::cos.float(float a) -> float

aten::cos.complex(complex a) -> complex

aten::cos.Scalar(Scalar a) -> Scalar

aten::sin.int(int a) -> float

aten::sin.float(float a) -> float

aten::sin.complex(complex a) -> complex

aten::sin.Scalar(Scalar a) -> Scalar

aten::tan.int(int a) -> float

aten::tan.float(float a) -> float

aten::tan.complex(complex a) -> complex

aten::tan.Scalar(Scalar a) -> Scalar

aten::asinh.int(int a) -> float

aten::asinh.float(float a) -> float

aten::asinh.complex(complex a) -> complex

aten::asinh.Scalar(Scalar a) -> Scalar

aten::atanh.int(int a) -> float

aten::atanh.float(float a) -> float

aten::atanh.complex(complex a) -> complex

aten::atanh.Scalar(Scalar a) -> Scalar

aten::acosh.int(int a) -> float

aten::acosh.float(float a) -> float

aten::acosh.complex(complex a) -> complex

aten::acosh.Scalar(Scalar a) -> Scalar

aten::fmod.int(int a, int b) -> float

aten::fmod.float(float a, float b) -> float

aten::fmod.int_float(int a, float b) -> float

aten::fmod.float_int(float a, int b) -> float

aten::fmod(Scalar a, Scalar b) -> float

aten::modf(float a) -> (float, float)

aten::factorial.int(int a) -> int

aten::frexp(float a) -> (float, int)

aten::isinf.float(float a) -> bool

aten::isinf.complex(complex a) -> bool

aten::degrees.int(int a) -> float

aten::degrees.float(float a) -> float

aten::degrees.Scalar(Scalar a) -> Scalar

aten::radians.int(int a) -> float

aten::radians.float(float a) -> float

aten::radians.Scalar(Scalar a) -> Scalar

aten::ldexp(float x, int i) -> float

aten::gcd.int(int a, int b) -> int

aten::isfinite.float(float a) -> bool

aten::isfinite.complex(complex a) -> bool

aten::mathremainder.int(int a, int b) -> float

aten::mathremainder.float(float a, float b) -> float

aten::mathremainder.int_float(int a, float b) -> float

aten::mathremainder.float_int(float a, int b) -> float

aten::mathremainder(Scalar a, Scalar b) -> float

文件

查閱 PyTorch 的全面開發者文件

檢視文件

教程

獲取面向初學者和高階開發者的深度教程

檢視教程

資源

查詢開發資源並獲取解答

檢視資源