AOTInductor 精簡器¶
在使用 AOT Inductor API(例如 torch._inductor.aoti_compile_and_package、torch._indcutor.aoti_load_package)或在某些輸入上執行 aoti_load_package 載入的模型時,如果遇到錯誤,可以使用 AOTInductor 精簡器建立一個最小的 nn.Module 來重現該錯誤,方法是將 from torch._inductor import config; config.aot_inductor.dump_aoti_minifier = True 設定為 True。
概括地說,使用精簡器有兩個步驟
設定
from torch._inductor import config; config.aot_inductor.dump_aoti_minifier = True或設定環境變數DUMP_AOTI_MINIFIER=1。然後執行出錯的指令碼,將生成一個minifier_launcher.py指令碼。可以透過將torch._dynamo.config.debug_dir_root設定為有效的目錄名來配置輸出目錄。執行
minifier_launcher.py指令碼。如果精簡器成功執行,它將在repro.py中生成可執行的 Python 程式碼,該程式碼可以精確地重現錯誤。
示例程式碼¶
以下是示例程式碼,它將產生一個錯誤,因為我們使用 torch._inductor.config.triton.inject_relu_bug_TESTING_ONLY = "compile_error" 在 relu 上注入了一個錯誤。
import torch
from torch._inductor import config as inductor_config
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(10, 16)
self.relu = torch.nn.ReLU()
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.sigmoid(x)
return x
inductor_config.aot_inductor.dump_aoti_minifier = True
torch._inductor.config.triton.inject_relu_bug_TESTING_ONLY = "compile_error"
with torch.no_grad():
model = Model().to("cuda")
example_inputs = (torch.randn(8, 10).to("cuda"),)
ep = torch.export.export(model, example_inputs)
package_path = torch._inductor.aoti_compile_and_package(ep)
compiled_model = torch._inductor.aoti_load_package(package_path)
result = compiled_model(*example_inputs)
上述程式碼生成以下錯誤
RuntimeError: Failed to import /tmp/torchinductor_shangdiy/fr/cfrlf4smkwe4lub4i4cahkrb3qiczhf7hliqqwpewbw3aplj5g3s.py
SyntaxError: invalid syntax (cfrlf4smkwe4lub4i4cahkrb3qiczhf7hliqqwpewbw3aplj5g3s.py, line 29)
這是因為我們在 relu 上注入了一個錯誤,因此生成的 triton kernel 如下所示。注意,我們這裡是 compile error! 而不是 relu,所以我們得到了一個 SyntaxError。
@triton.jit
def triton_poi_fused_addmm_relu_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = compile error!
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
由於我們設定了 torch._inductor.config.aot_inductor.dump_aoti_minifier=True,我們還會看到一條附加行,指示 minifier_launcher.py 已寫入的位置。可以透過將 torch._dynamo.config.debug_dir_root 設定為有效的目錄名來配置輸出目錄。
W1031 16:21:08.612000 2861654 pytorch/torch/_dynamo/debug_utils.py:279] Writing minified repro to:
W1031 16:21:08.612000 2861654 pytorch/torch/_dynamo/debug_utils.py:279] /data/users/shangdiy/pytorch/torch_compile_debug/run_2024_10_31_16_21_08_602433-pid_2861654/minifier/minifier_launcher.py
精簡器啟動器¶
的 minifier_launcher.py 檔案包含以下程式碼。exported_program 包含 torch._inductor.aoti_compile_and_package 的輸入。command='minify' 引數表示指令碼將執行精簡器來建立一個最小的圖模組(graph module),以重現錯誤。或者,您可以將 command='run' 用於僅編譯、載入和執行載入的模型(不執行精簡器)。
import torch
import torch._inductor.inductor_prims
import torch._dynamo.config
import torch._inductor.config
import torch._functorch.config
import torch.fx.experimental._config
torch._inductor.config.triton.inject_relu_bug_TESTING_ONLY = 'compile_error'
torch._inductor.config.aot_inductor.dump_aoti_minifier = True
isolate_fails_code_str = None
# torch version: 2.6.0a0+gitcd9c6e9
# torch cuda version: 12.0
# torch git version: cd9c6e9408dd79175712223895eed36dbdc84f84
# CUDA Info:
# nvcc: NVIDIA (R) Cuda compiler driver
# Copyright (c) 2005-2023 NVIDIA Corporation
# Built on Fri_Jan__6_16:45:21_PST_2023
# Cuda compilation tools, release 12.0, V12.0.140
# Build cuda_12.0.r12.0/compiler.32267302_0
# GPU Hardware Info:
# NVIDIA PG509-210 : 8
exported_program = torch.export.load('/data/users/shangdiy/pytorch/torch_compile_debug/run_2024_11_06_13_52_35_711642-pid_3567062/minifier/checkpoints/exported_program.pt2')
# print(exported_program.graph)
config_patches={}
if __name__ == '__main__':
from torch._dynamo.repro.aoti import run_repro
with torch.no_grad():
run_repro(exported_program, config_patches=config_patches, accuracy=False, command='minify', save_dir='/data/users/shangdiy/pytorch/torch_compile_debug/run_2024_11_06_13_52_35_711642-pid_3567062/minifier/checkpoints', check_str=None)
假設我們保留了 command='minify' 選項並執行指令碼,我們將獲得以下輸出
...
W1031 16:48:08.938000 3598491 torch/_dynamo/repro/aoti.py:89] Writing checkpoint with 3 nodes to /data/users/shangdiy/pytorch/torch_compile_debug/run_2024_10_31_16_48_02_720863-pid_3598491/minifier/checkpoints/3.py
W1031 16:48:08.975000 3598491 torch/_dynamo/repro/aoti.py:101] Copying repro file for convenience to /data/users/shangdiy/pytorch/repro.py
Wrote minimal repro out to repro.py
如果在執行 minifier_launcher.py 時遇到 AOTIMinifierError 錯誤,請在此處報告 bug。
精簡結果¶
的 repro.py 看起來是這樣的。注意,匯出的程式(exported program)列印在檔案的頂部,它只包含 relu 節點。精簡器成功地將圖簡化到了引發錯誤的運算元。
# from torch.nn import *
# class Repro(torch.nn.Module):
# def __init__(self) -> None:
# super().__init__()
# def forward(self, linear):
# relu = torch.ops.aten.relu.default(linear); linear = None
# return (relu,)
import torch
from torch import tensor, device
import torch.fx as fx
from torch._dynamo.testing import rand_strided
from math import inf
import torch._inductor.inductor_prims
import torch._dynamo.config
import torch._inductor.config
import torch._functorch.config
import torch.fx.experimental._config
torch._inductor.config.generate_intermediate_hooks = True
torch._inductor.config.triton.inject_relu_bug_TESTING_ONLY = 'compile_error'
torch._inductor.config.aot_inductor.dump_aoti_minifier = True
isolate_fails_code_str = None
# torch version: 2.6.0a0+gitcd9c6e9
# torch cuda version: 12.0
# torch git version: cd9c6e9408dd79175712223895eed36dbdc84f84
# CUDA Info:
# nvcc: NVIDIA (R) Cuda compiler driver
# Copyright (c) 2005-2023 NVIDIA Corporation
# Built on Fri_Jan__6_16:45:21_PST_2023
# Cuda compilation tools, release 12.0, V12.0.140
# Build cuda_12.0.r12.0/compiler.32267302_0
# GPU Hardware Info:
# NVIDIA PG509-210 : 8
exported_program = torch.export.load('/data/users/shangdiy/pytorch/torch_compile_debug/run_2024_11_25_13_59_33_102283-pid_3658904/minifier/checkpoints/exported_program.pt2')
# print(exported_program.graph)
config_patches={'aot_inductor.package': True}
if __name__ == '__main__':
from torch._dynamo.repro.aoti import run_repro
with torch.no_grad():
run_repro(exported_program, config_patches=config_patches, accuracy=False, command='run', save_dir='/data/users/shangdiy/pytorch/torch_compile_debug/run_2024_11_25_13_59_33_102283-pid_3658904/minifier/checkpoints', check_str=None)