DiscreteCQLLoss¶
- class torchrl.objectives.DiscreteCQLLoss(*args, **kwargs)[原始碼]¶
TorchRL 對離散 CQL loss 的實現。
此類實現了離散保守 Q 學習 (CQL) loss 函式,該函式在論文“用於離線強化學習的保守 Q 學習”(Conservative Q-Learning for Offline Reinforcement Learning) (https://arxiv.org/abs/2006.04779) 中提出。
- 引數:
value_network (Union[QValueActor, nn.Module]) – 用於估計狀態-動作值的 Q-value 網路。
- 關鍵字引數:
loss_function (Optional[str]) – 用於計算預測 Q 值與目標 Q 值之間距離的距離函式。預設為
l2。delay_value (bool) – 是否將目標 Q 值網路與用於資料收集的 Q 值網路分開。預設為
True。gamma (
float, optional) – 折扣因子。預設為None。action_space – 環境的動作空間。如果為 None,則從 value network 推斷。預設為 None。
reduction (str, optional) – 指定應用於輸出的歸約方式:
"none"|"mean"|"sum"。"none":不應用歸約;"mean":輸出的總和將被輸出元素的數量除;"sum":輸出將被求和。預設為:"mean"。
示例
>>> from torchrl.modules import MLP, QValueActor >>> from torchrl.data import OneHot >>> from torchrl.objectives import DiscreteCQLLoss >>> n_obs, n_act = 4, 3 >>> value_net = MLP(in_features=n_obs, out_features=n_act) >>> spec = OneHot(n_act) >>> actor = QValueActor(value_net, in_keys=["observation"], action_space=spec) >>> loss = DiscreteCQLLoss(actor, action_space=spec) >>> batch = [10,] >>> data = TensorDict({ ... "observation": torch.randn(*batch, n_obs), ... "action": spec.rand(batch), ... ("next", "observation"): torch.randn(*batch, n_obs), ... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "reward"): torch.randn(*batch, 1) ... }, batch) >>> loss(data) TensorDict( fields={ loss_cql: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), pred_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), target_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), td_error: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
此類也相容非 tensordict 的模組,並且可以在不依賴任何 tensordict 相關原語的情況下使用。在這種情況下,預期的關鍵字引數為:
["observation", "next_observation", "action", "next_reward", "next_done", "next_terminated"],並返回一個 loss 值。示例
>>> from torchrl.objectives import DiscreteCQLLoss >>> from torchrl.data import OneHot >>> from torch import nn >>> import torch >>> n_obs = 3 >>> n_action = 4 >>> action_spec = OneHot(n_action) >>> value_network = nn.Linear(n_obs, n_action) # a simple value model >>> dcql_loss = DiscreteCQLLoss(value_network, action_space=action_spec) >>> # define data >>> observation = torch.randn(n_obs) >>> next_observation = torch.randn(n_obs) >>> action = action_spec.rand() >>> next_reward = torch.randn(1) >>> next_done = torch.zeros(1, dtype=torch.bool) >>> next_terminated = torch.zeros(1, dtype=torch.bool) >>> loss_val = dcql_loss( ... observation=observation, ... next_observation=next_observation, ... next_reward=next_reward, ... next_done=next_done, ... next_terminated=next_terminated, ... action=action)
- default_keys¶
的別名
_AcceptedKeys
- forward(tensordict: TensorDictBase = None) TensorDict[原始碼]¶
計算從回放緩衝區取樣的 tensordict 的 (DQN) CQL loss。
- 此函式還將寫入一個“td_error”鍵,可由優先回放緩衝區用於分配
tensordict 中各項的優先順序。
- 引數:
tensordict (TensorDictBase) – 一個 tensordict,包含鍵 [“action”] 和 value network 的 in_keys(即在“next”tensordict 中的 observations, “done”, “terminated”, “reward”)。
- 返回:
一個包含 CQL loss 的張量。
- make_value_estimator(value_type: Optional[ValueEstimators] = None, **hyperparams)[原始碼]¶
價值函式構造器。
如果需要非預設價值函式,則必須使用此方法構建。
- 引數:
value_type (ValueEstimators) – 一個
ValueEstimators列舉型別,指示要使用的價值函式。如果未提供,則將使用儲存在default_value_estimator屬性中的預設值。結果的價值估計器類將被註冊到self.value_type中,以便將來進行微調。**hyperparams – 用於價值函式的超引數。如果未提供,則將使用
default_value_kwargs()指定的值。
示例
>>> from torchrl.objectives import DQNLoss >>> # initialize the DQN loss >>> actor = torch.nn.Linear(3, 4) >>> dqn_loss = DQNLoss(actor, action_space="one-hot") >>> # updating the parameters of the default value estimator >>> dqn_loss.make_value_estimator(gamma=0.9) >>> dqn_loss.make_value_estimator( ... ValueEstimators.TD1, ... gamma=0.9) >>> # if we want to change the gamma value >>> dqn_loss.make_value_estimator(dqn_loss.value_type, gamma=0.9)