CQLLoss¶
- class torchrl.objectives.CQLLoss(*args, **kwargs)[原始碼]¶
TorchRL 對連續 CQL 損失的實現。
提出於 “Conservative Q-Learning for Offline Reinforcement Learning” https://arxiv.org/abs/2006.04779
- 引數:
actor_network (ProbabilisticActor) – 隨機 actor
qvalue_network (TensorDictModule 或 TensorDictModule 列表) –
Q(s, a) 引數模型。此模組通常輸出一個
"state_action_value"條目。如果提供單個 qvalue_network 例項,它將被複制N次(此損失中N=2)。如果傳遞模組列表,除非它們共享同一身份(此時原始引數將被展開),否則它們的引數將被堆疊。警告
當傳遞引數列表時,它__不會__與策略引數進行比較,並且所有引數將被視為未繫結。
- 關鍵字引數:
loss_function (str, 可選) – 用於值函式損失的損失函式。預設值為 “smooth_l1”。
alpha_init (
float, 可選) – 初始熵乘數。預設值為 1.0。min_alpha (
float, 可選) – alpha 的最小值。預設值為 None(無最小值)。max_alpha (
float, 可選) – alpha 的最大值。預設值為 None(無最大值)。action_spec (TensorSpec, 可選) – 動作張量規範。如果未提供且目標熵為
"auto",它將從 actor 中獲取。fixed_alpha (bool, 可選) – 如果
True,alpha 將固定為其初始值。否則,alpha 將被最佳化以匹配“target_entropy”值。預設值為False。target_entropy (
float或 str, 可選) – 隨機策略的目標熵。預設值為 “auto”,此時目標熵計算為-prod(n_actions)。delay_actor (bool, 可選) – 是否將目標 actor 網路與用於資料收集的 actor 網路分開。預設值為
False。delay_qvalue (bool, 可選) – 是否將目標 Q 值網路與用於資料收集的 Q 值網路分開。預設值為
True。gamma (
float, 可選) – 折扣因子。預設值為None。temperature (
float, 可選) – CQL 溫度。預設值為 1.0。min_q_weight (
float, 可選) – 最小 Q 權重。預設值為 1.0。max_q_backup (bool, 可選) – 是否使用 max-min Q backup。預設值為
False。deterministic_backup (bool, 可選) – 是否使用確定性備份。預設值為
True。num_random (int, 可選) – 為 CQL 損失取樣的隨機動作數量。預設值為 10。
with_lagrange (bool, 可選) – 是否使用拉格朗日乘數。預設值為
False。lagrange_thresh (
float, 可選) – 拉格朗日閾值。預設值為 0.0。reduction (str, 可選) – 指定應用於輸出的 reduction 方式:
"none"|"mean"|"sum"。"none":不應用 reduction,"mean":輸出總和除以輸出中的元素數量,"sum":對輸出求和。預設值:"mean"。
示例
>>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.cql import CQLLoss >>> from tensordict import TensorDict >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor()) >>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"]) >>> actor = ProbabilisticActor( ... module=module, ... in_keys=["loc", "scale"], ... spec=spec, ... distribution_class=TanhNormal) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> qvalue = ValueOperator( ... module=module, ... in_keys=['observation', 'action']) >>> loss = CQLLoss(actor, qvalue) >>> batch = [2, ] >>> action = spec.rand(batch) >>> data = TensorDict({ ... "observation": torch.randn(*batch, n_obs), ... "action": action, ... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "reward"): torch.randn(*batch, 1), ... ("next", "observation"): torch.randn(*batch, n_obs), ... }, batch) >>> loss(data) TensorDict( fields={ alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_actor_bc: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_cql: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
此類也與非 tensordict 模組相容,無需使用任何 tensordict 相關原語即可使用。在這種情況下,預期的關鍵字引數為:
["action", "next_reward", "next_done", "next_terminated"]+ actor、value 和 qvalue 網路的 in_keys。返回值是一個張量元組,順序如下:["loss_actor", "loss_qvalue", "loss_alpha", "loss_alpha_prime", "alpha", "entropy"]。示例
>>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.cql import CQLLoss >>> _ = torch.manual_seed(42) >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor()) >>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"]) >>> actor = ProbabilisticActor( ... module=module, ... in_keys=["loc", "scale"], ... spec=spec, ... distribution_class=TanhNormal) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> qvalue = ValueOperator( ... module=module, ... in_keys=['observation', 'action']) >>> loss = CQLLoss(actor, qvalue) >>> batch = [2, ] >>> action = spec.rand(batch) >>> loss_actor, loss_actor_bc, loss_qvalue, loss_cql, *_ = loss( ... observation=torch.randn(*batch, n_obs), ... action=action, ... next_done=torch.zeros(*batch, 1, dtype=torch.bool), ... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool), ... next_observation=torch.zeros(*batch, n_obs), ... next_reward=torch.randn(*batch, 1)) >>> loss_actor.backward()
輸出鍵也可以使用
CQLLoss.select_out_keys()方法進行過濾。示例
>>> _ = loss.select_out_keys('loss_actor', 'loss_qvalue') >>> loss_actor, loss_qvalue = loss( ... observation=torch.randn(*batch, n_obs), ... action=action, ... next_done=torch.zeros(*batch, 1, dtype=torch.bool), ... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool), ... next_observation=torch.zeros(*batch, n_obs), ... next_reward=torch.randn(*batch, 1)) >>> loss_actor.backward()
- default_keys¶
_AcceptedKeys的別名
- forward(tensordict: TensorDictBase = None) TensorDictBase[原始碼]¶
它被設計用於讀取輸入的 TensorDict 並返回另一個包含以“loss*”命名的損失鍵的 tensordict。
將其損失分解為各個組成部分後,訓練器就可以在整個訓練過程中記錄各種損失值。輸出 tensordict 中存在的其他標量也將被記錄。
- 引數:
tensordict – 包含計算損失所需值的輸入 tensordict。
- 返回:
一個新的不帶 batch 維度的 tensordict,包含各種損失標量,這些標量將命名為“loss*”。這些損失必須以此名稱返回,因為訓練器將在反向傳播之前讀取它們。
- make_value_estimator(value_type: Optional[ValueEstimators] = None, **hyperparams)[原始碼]¶
值函式建構函式。
如果需要非預設值函式,則必須使用此方法構建。
- 引數:
value_type (ValueEstimators) – 一個
ValueEstimators列舉型別,指示要使用的值函式。如果未提供,將使用儲存在default_value_estimator屬性中的預設值。結果的值估計器類將註冊到self.value_type中,以便將來進行改進。**hyperparams – 用於值函式的超引數。如果未提供,將使用
default_value_kwargs()指定的值。
示例
>>> from torchrl.objectives import DQNLoss >>> # initialize the DQN loss >>> actor = torch.nn.Linear(3, 4) >>> dqn_loss = DQNLoss(actor, action_space="one-hot") >>> # updating the parameters of the default value estimator >>> dqn_loss.make_value_estimator(gamma=0.9) >>> dqn_loss.make_value_estimator( ... ValueEstimators.TD1, ... gamma=0.9) >>> # if we want to change the gamma value >>> dqn_loss.make_value_estimator(dqn_loss.value_type, gamma=0.9)