IQLLoss¶
- class torchrl.objectives.IQLLoss(*args, **kwargs)[source]¶
TorchRL 實現的 IQL 損失函式。
出自論文 “Offline Reinforcement Learning with Implicit Q-Learning” https://arxiv.org/abs/2110.06169
- 引數:
actor_network (ProbabilisticActor) – 隨機 actor
qvalue_network (TensorDictModule) –
Q(s, a) 引數模型。如果提供了一個 qvalue_network 例項,它將被複制
num_qvalue_nets次。如果傳入模組列表,它們的引數將被堆疊,除非它們共享相同的身份(在這種情況下,原始引數將被展開)。警告
當傳入引數列表時,它們將__不會__與 policy 引數進行比較,並且所有引數將被視為未繫結。
value_network (TensorDictModule, 可選) – V(s) 引數模型。
- 關鍵字引數:
num_qvalue_nets (integer, 可選) – 使用的 Q 值網路數量。預設為
2。loss_function (str, 可選) – 用於 value function loss 的損失函式。預設為 “smooth_l1”。
temperature (
float, 可選) – 逆溫度 (beta)。對於較小的超引數值,目標函式表現得類似於行為克隆,而對於較大的值,它試圖恢復 Q 函式的最大值。expectile (
float, 可選) – expectile \(\tau\)。 對於需要動態規劃(“stichting”)的 antmaze 任務,較大的 \(\tau\) 值至關重要。priority_key (str, 可選) – [已棄用,請改用 .set_keys(priority_key=priority_key)] tensordict 中用於寫入優先順序(用於優先順序回放緩衝區)的鍵。預設為 “td_error”。
separate_losses (bool, 可選) – 如果為
True,policy 和 critic 之間的共享引數將僅透過 policy loss 進行訓練。預設為False,即梯度會傳播到 policy 和 critic loss 的共享引數。reduction (str, 可選) – 指定應用於輸出的 reduction 型別:
"none"|"mean"|"sum"。"none":不應用 reduction。"mean":輸出的總和將除以輸出中的元素數量。"sum":輸出將被求和。預設為"mean"。
示例
>>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.iql import IQLLoss >>> from tensordict import TensorDict >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor()) >>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"]) >>> actor = ProbabilisticActor( ... module=module, ... in_keys=["loc", "scale"], ... spec=spec, ... distribution_class=TanhNormal) >>> class QValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> qvalue = SafeModule( ... QValueClass(), ... in_keys=["observation", "action"], ... out_keys=["state_action_value"], ... ) >>> value = SafeModule( ... nn.Linear(n_obs, 1), ... in_keys=["observation"], ... out_keys=["state_value"], ... ) >>> loss = IQLLoss(actor, qvalue, value) >>> batch = [2, ] >>> action = spec.rand(batch) >>> data = TensorDict({ ... "observation": torch.randn(*batch, n_obs), ... "action": action, ... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "reward"): torch.randn(*batch, 1), ... ("next", "observation"): torch.randn(*batch, n_obs), ... }, batch) >>> loss(data) TensorDict( fields={ entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
此類別也相容非 tensordict 的模組,無需使用任何 tensordict 相關原語即可使用。在這種情況下,預期的關鍵字引數為:
["action", "next_reward", "next_done", "next_terminated"]+ actor、value 和 qvalue 網路的 in_keys。返回值是按以下順序排列的 tensor 元組:["loss_actor", "loss_qvalue", "loss_value", "entropy"]。示例
>>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.iql import IQLLoss >>> _ = torch.manual_seed(42) >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor()) >>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"]) >>> actor = ProbabilisticActor( ... module=module, ... in_keys=["loc", "scale"], ... spec=spec, ... distribution_class=TanhNormal) >>> class QValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> qvalue = SafeModule( ... QValueClass(), ... in_keys=["observation", "action"], ... out_keys=["state_action_value"], ... ) >>> value = SafeModule( ... nn.Linear(n_obs, 1), ... in_keys=["observation"], ... out_keys=["state_value"], ... ) >>> loss = IQLLoss(actor, qvalue, value) >>> batch = [2, ] >>> action = spec.rand(batch) >>> loss_actor, loss_qvalue, loss_value, entropy = loss( ... observation=torch.randn(*batch, n_obs), ... action=action, ... next_done=torch.zeros(*batch, 1, dtype=torch.bool), ... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool), ... next_observation=torch.zeros(*batch, n_obs), ... next_reward=torch.randn(*batch, 1)) >>> loss_actor.backward()
輸出鍵也可以使用
IQLLoss.select_out_keys()方法進行過濾。示例
>>> _ = loss.select_out_keys('loss_actor', 'loss_qvalue') >>> loss_actor, loss_qvalue = loss( ... observation=torch.randn(*batch, n_obs), ... action=action, ... next_done=torch.zeros(*batch, 1, dtype=torch.bool), ... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool), ... next_observation=torch.zeros(*batch, n_obs), ... next_reward=torch.randn(*batch, 1)) >>> loss_actor.backward()
- default_keys¶
別名
_AcceptedKeys
- forward(tensordict: TensorDictBase = None) TensorDictBase[source]¶
它旨在讀取輸入的 TensorDict 並返回另一個包含名為“loss*”的損失鍵的 tensordict。
然後,訓練器可以使用將損失拆分為其組成部分的功能,在整個訓練過程中記錄各種損失值。輸出 tensordict 中存在的其他標量也將被記錄。
- 引數:
tensordict – 包含計算損失所需值的輸入 tensordict。
- 返回值:
一個新的不含批次維度的 tensordict,其中包含各種名為“loss*”的損失標量。損失必須以此名稱返回,這一點至關重要,因為訓練器會在反向傳播之前讀取它們。
- make_value_estimator(value_type: Optional[ValueEstimators] = None, **hyperparams)[source]¶
值函式構造器。
如果需要非預設值函式,必須使用此方法構建。
- 引數:
value_type (ValueEstimators) – 指示要使用的值函式的
ValueEstimators列舉型別。如果未提供,將使用儲存在default_value_estimator屬性中的預設值。由此產生的值估計器類將註冊到self.value_type中,以便將來進行細化。**hyperparams – 用於值函式的超引數。如果未提供,將使用
default_value_kwargs()指定的值。
示例
>>> from torchrl.objectives import DQNLoss >>> # initialize the DQN loss >>> actor = torch.nn.Linear(3, 4) >>> dqn_loss = DQNLoss(actor, action_space="one-hot") >>> # updating the parameters of the default value estimator >>> dqn_loss.make_value_estimator(gamma=0.9) >>> dqn_loss.make_value_estimator( ... ValueEstimators.TD1, ... gamma=0.9) >>> # if we want to change the gamma value >>> dqn_loss.make_value_estimator(dqn_loss.value_type, gamma=0.9)