DiscreteIQLLoss¶
- class torchrl.objectives.DiscreteIQLLoss(*args, **kwargs)[原始碼]¶
TorchRL 對離散 IQL 損失函式的實現。
選自論文“Offline Reinforcement Learning with Implicit Q-Learning” https://arxiv.org/abs/2110.06169
- 引數:
actor_network (ProbabilisticActor) – 隨機策略網路
qvalue_network (TensorDictModule) – Q(s, a) 引數化模型。
value_network (TensorDictModule, optional) – V(s) 引數化模型。
- 關鍵字引數:
action_space (str or TensorSpec) – 動作空間。必須是
"one-hot","mult_one_hot","binary"或"categorical"中的一個,或是相應 spec (torchrl.data.OneHot,torchrl.data.MultiOneHot,torchrl.data.Binary或torchrl.data.Categorical) 的例項。num_qvalue_nets (integer, optional) – 使用的 Q-Value 網路數量。預設為
2。loss_function (str, optional) – 用於值函式損失的損失函式。預設為 “smooth_l1”。
temperature (
float, optional) – 逆溫度 (beta)。對於較小的超引數值,目標函式的行為類似於行為克隆;而對於較大的值,它試圖恢復 Q 函式的最大值。expectile (
float, optional) – expectile \(\tau\)。較大的 \(\tau\) 值對於需要動態規劃(“stichting”)的 antmaze 任務至關重要。priority_key (str, optional) – [已棄用,請改用 .set_keys(priority_key=priority_key) 代替] 用於寫入優先順序的 tensordict 鍵(用於優先經驗回放緩衝區)。預設為 “td_error”。
separate_losses (bool, optional) – 如果為
True,策略和 critic 之間的共享引數將僅透過策略損失進行訓練。預設為False,即梯度會傳播到策略和 critic 損失的共享引數。reduction (str, optional) – 指定應用於輸出的歸約方式:
"none"|"mean"|"sum"。"none":不應用歸約;"mean":輸出的總和將除以輸出中的元素數量;"sum":輸出將被求和。預設值:"mean"。
示例
>>> import torch >>> from torch import nn >>> from torchrl.data.tensor_specs import OneHot >>> from torchrl.modules.distributions.discrete import OneHotCategorical >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.iql import DiscreteIQLLoss >>> from tensordict import TensorDict >>> n_act, n_obs = 4, 3 >>> spec = OneHot(n_act) >>> module = SafeModule(nn.Linear(n_obs, n_act), in_keys=["observation"], out_keys=["logits"]) >>> actor = ProbabilisticActor( ... module=module, ... in_keys=["logits"], ... out_keys=["action"], ... spec=spec, ... distribution_class=OneHotCategorical) >>> qvalue = SafeModule( ... nn.Linear(n_obs, n_act), ... in_keys=["observation"], ... out_keys=["state_action_value"], ... ) >>> value = SafeModule( ... nn.Linear(n_obs, 1), ... in_keys=["observation"], ... out_keys=["state_value"], ... ) >>> loss = DiscreteIQLLoss(actor, qvalue, value) >>> batch = [2, ] >>> action = spec.rand(batch).long() >>> data = TensorDict({ ... "observation": torch.randn(*batch, n_obs), ... "action": action, ... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "reward"): torch.randn(*batch, 1), ... ("next", "observation"): torch.randn(*batch, n_obs), ... }, batch) >>> loss(data) TensorDict( fields={ entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
此類也相容非基於 tensordict 的模組,並且無需使用任何 tensordict 相關原語即可使用。在這種情況下,預期的關鍵字引數為:
["action", "next_reward", "next_done", "next_terminated"]+ actor、value 和 qvalue 網路的 in_keys。返回值是一個按以下順序排列的張量元組:["loss_actor", "loss_qvalue", "loss_value", "entropy"]。示例
>>> import torch >>> import torch >>> from torch import nn >>> from torchrl.data.tensor_specs import OneHot >>> from torchrl.modules.distributions.discrete import OneHotCategorical >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.iql import DiscreteIQLLoss >>> _ = torch.manual_seed(42) >>> n_act, n_obs = 4, 3 >>> spec = OneHot(n_act) >>> module = SafeModule(nn.Linear(n_obs, n_act), in_keys=["observation"], out_keys=["logits"]) >>> actor = ProbabilisticActor( ... module=module, ... in_keys=["logits"], ... out_keys=["action"], ... spec=spec, ... distribution_class=OneHotCategorical) >>> qvalue = SafeModule( ... nn.Linear(n_obs, n_act), ... in_keys=["observation"], ... out_keys=["state_action_value"], ... ) >>> value = SafeModule( ... nn.Linear(n_obs, 1), ... in_keys=["observation"], ... out_keys=["state_value"], ... ) >>> loss = DiscreteIQLLoss(actor, qvalue, value) >>> batch = [2, ] >>> action = spec.rand(batch).long() >>> loss_actor, loss_qvalue, loss_value, entropy = loss( ... observation=torch.randn(*batch, n_obs), ... action=action, ... next_done=torch.zeros(*batch, 1, dtype=torch.bool), ... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool), ... next_observation=torch.zeros(*batch, n_obs), ... next_reward=torch.randn(*batch, 1)) >>> loss_actor.backward()
輸出鍵也可以使用
DiscreteIQLLoss.select_out_keys()方法進行過濾。示例
>>> _ = loss.select_out_keys('loss_actor', 'loss_qvalue', 'loss_value') >>> loss_actor, loss_qvalue, loss_value = loss( ... observation=torch.randn(*batch, n_obs), ... action=action, ... next_done=torch.zeros(*batch, 1, dtype=torch.bool), ... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool), ... next_observation=torch.zeros(*batch, n_obs), ... next_reward=torch.randn(*batch, 1)) >>> loss_actor.backward()
- default_keys¶
_AcceptedKeys的別名
- forward(tensordict: TensorDictBase = None) TensorDictBase¶
它旨在讀取輸入的 TensorDict 並返回另一個包含名為“loss*”的損失鍵的 tensordict。
將損失分解到其組成部分,然後訓練器可以使用這些元件來記錄訓練過程中的各種損失值。輸出 tensordict 中存在的其他標量值也將被記錄。
- 引數:
tensordict – 包含計算損失所需值的輸入 tensordict。
- 返回值:
一個不包含批處理維度的新 tensordict,其中包含各種損失標量,這些標量將命名為“loss*”。將損失值以這個名稱返回至關重要,因為訓練器會在反向傳播之前讀取它們。