注意
前往末尾 下載完整的示例程式碼。
操作 TensorDict 的鍵¶
作者: Tom Begley
在本教程中,您將學習如何在 TensorDict 中使用和操作鍵,包括獲取和設定鍵、迭代鍵、操作巢狀值以及展平鍵。
設定和獲取鍵¶
我們可以使用與 Python dict 相同的語法來設定和獲取鍵
import torch
from tensordict.tensordict import TensorDict
tensordict = TensorDict()
# set a key
a = torch.rand(10)
tensordict["a"] = a
# retrieve the value stored under "a"
assert tensordict["a"] is a
注意
與 Python dict 不同,TensorDict 中的所有鍵都必須是字串。然而,正如我們將看到的,也可以使用字串元組來操作巢狀值。
我們也可以使用方法 .get() 和 .set 來實現同樣的功能。
tensordict = TensorDict()
# set a key
a = torch.rand(10)
tensordict.set("a", a)
# retrieve the value stored under "a"
assert tensordict.get("a") is a
與 dict 類似,我們可以為 get 提供一個預設值,當請求的鍵未找到時返回該值。
同樣,與 dict 類似,我們可以使用 TensorDict.setdefault() 來獲取特定鍵的值,如果未找到該鍵則返回預設值,同時也在 TensorDict 中設定該值。
刪除鍵的方式也與 Python dict 相同,使用 del 語句和選擇的鍵。同樣,我們也可以使用 TensorDict.del_ 方法。
del tensordict["banana"]
此外,使用 .set() 設定鍵時,我們可以使用關鍵字引數 inplace=True 進行原地更新,或者等價地使用 .set_() 方法。
tensordict.set("a", torch.zeros(10), inplace=True)
# all the entries of the "a" tensor are now zero
assert (tensordict.get("a") == 0).all()
# but it's still the same tensor as before
assert tensordict.get("a") is a
# we can achieve the same with set_
tensordict.set_("a", torch.ones(10))
assert (tensordict.get("a") == 1).all()
assert tensordict.get("a") is a
重新命名鍵¶
要重新命名鍵,只需使用 TensorDict.rename_key_ 方法。儲存在原始鍵下的值將保留在 TensorDict 中,但鍵將更改為指定的新鍵。
tensordict.rename_key_("a", "b")
assert tensordict.get("b") is a
print(tensordict)
TensorDict(
fields={
b: Tensor(shape=torch.Size([10]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([]),
device=None,
is_shared=False)
更新多個值¶
TensorDict.update 方法可用於使用另一個 TensorDict` 或 dict 來更新一個 TensorDict`。已經存在的鍵將被覆蓋,不存在的鍵將被建立。
tensordict = TensorDict({"a": torch.rand(10), "b": torch.rand(10)}, [10])
tensordict.update(TensorDict({"a": torch.zeros(10), "c": torch.zeros(10)}, [10]))
assert (tensordict["a"] == 0).all()
assert (tensordict["b"] != 0).all()
assert (tensordict["c"] == 0).all()
print(tensordict)
TensorDict(
fields={
a: Tensor(shape=torch.Size([10]), device=cpu, dtype=torch.float32, is_shared=False),
b: Tensor(shape=torch.Size([10]), device=cpu, dtype=torch.float32, is_shared=False),
c: Tensor(shape=torch.Size([10]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([10]),
device=None,
is_shared=False)
巢狀值¶
TensorDict 的值本身也可以是 TensorDict。我們可以在例項化時新增巢狀值,可以透過直接新增 TensorDict,或者使用巢狀字典的方式
# creating nested values with a nested dict
nested_tensordict = TensorDict(
{"a": torch.rand(2, 3), "double_nested": {"a": torch.rand(2, 3)}}, [2, 3]
)
# creating nested values with a TensorDict
tensordict = TensorDict({"a": torch.rand(2), "nested": nested_tensordict}, [2])
print(tensordict)
TensorDict(
fields={
a: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
nested: TensorDict(
fields={
a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
double_nested: TensorDict(
fields={
a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([2, 3]),
device=None,
is_shared=False)},
batch_size=torch.Size([2, 3]),
device=None,
is_shared=False)},
batch_size=torch.Size([2]),
device=None,
is_shared=False)
要訪問這些巢狀值,我們可以使用字串元組。例如
double_nested_a = tensordict["nested", "double_nested", "a"]
nested_a = tensordict.get(("nested", "a"))
類似地,我們可以使用字串元組來設定巢狀值
tensordict["nested", "double_nested", "b"] = torch.rand(2, 3)
tensordict.set(("nested", "b"), torch.rand(2, 3))
print(tensordict)
TensorDict(
fields={
a: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
nested: TensorDict(
fields={
a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
b: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
double_nested: TensorDict(
fields={
a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
b: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([2, 3]),
device=None,
is_shared=False)},
batch_size=torch.Size([2, 3]),
device=None,
is_shared=False)},
batch_size=torch.Size([2]),
device=None,
is_shared=False)
迭代 TensorDict 的內容¶
我們可以使用 .keys() 方法迭代 TensorDict 的鍵。
a
nested
預設情況下,這將只迭代 TensorDict 中的頂層鍵,但是可以透過關鍵字引數 include_nested=True 遞迴迭代 TensorDict 中的所有鍵。這將遞迴迭代任何巢狀 TensorDict 中的所有鍵,並以字串元組的形式返回巢狀鍵。
a
('nested', 'a')
('nested', 'double_nested', 'a')
('nested', 'double_nested', 'b')
('nested', 'double_nested')
('nested', 'b')
nested
如果您只想迭代對應於 Tensor 值(即葉子節點)的鍵,您可以額外指定 leaves_only=True。
a
('nested', 'a')
('nested', 'double_nested', 'a')
('nested', 'double_nested', 'b')
('nested', 'b')
與 dict 非常類似,還有 .values 和 .items 方法,它們接受相同的關鍵字引數。
a is a Tensor
nested is a TensorDict
('nested', 'a') is a Tensor
('nested', 'double_nested') is a TensorDict
('nested', 'double_nested', 'a') is a Tensor
('nested', 'double_nested', 'b') is a Tensor
('nested', 'b') is a Tensor
檢查鍵是否存在¶
要檢查鍵是否存在於 TensorDict 中,請結合 .keys() 使用 in 運算子。
注意
執行 key in tensordict.keys() 會進行高效的鍵查詢(在巢狀情況下在每個級別上遞迴查詢),因此當 TensorDict 中存在大量鍵時,效能不會受到負面影響。
assert "a" in tensordict.keys()
# to check for nested keys, set include_nested=True
assert ("nested", "a") in tensordict.keys(include_nested=True)
assert ("nested", "banana") not in tensordict.keys(include_nested=True)
展平與非展平巢狀鍵¶
我們可以使用 .flatten_keys() 方法展平具有巢狀值(鍵)的 TensorDict。
print(tensordict, end="\n\n")
print(tensordict.flatten_keys(separator="."))
TensorDict(
fields={
a: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
nested: TensorDict(
fields={
a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
b: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
double_nested: TensorDict(
fields={
a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
b: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([2, 3]),
device=None,
is_shared=False)},
batch_size=torch.Size([2, 3]),
device=None,
is_shared=False)},
batch_size=torch.Size([2]),
device=None,
is_shared=False)
TensorDict(
fields={
a: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
nested.a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
nested.b: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
nested.double_nested.a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
nested.double_nested.b: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([2]),
device=None,
is_shared=False)
給定一個已經展平的 TensorDict,可以使用 .unflatten_keys() 方法將其恢復到非展平狀態。
flattened_tensordict = tensordict.flatten_keys(separator=".")
print(flattened_tensordict, end="\n\n")
print(flattened_tensordict.unflatten_keys(separator="."))
TensorDict(
fields={
a: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
nested.a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
nested.b: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
nested.double_nested.a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
nested.double_nested.b: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([2]),
device=None,
is_shared=False)
TensorDict(
fields={
a: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
nested: TensorDict(
fields={
a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
b: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
double_nested: TensorDict(
fields={
a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
b: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([2]),
device=None,
is_shared=False)},
batch_size=torch.Size([2]),
device=None,
is_shared=False)},
batch_size=torch.Size([2]),
device=None,
is_shared=False)
當操作 torch.nn.Module 的引數時,這會特別有用,因為最終我們可以得到一個結構模仿模組結構的 TensorDict。
import torch.nn as nn
module = nn.Sequential(
nn.Sequential(nn.Linear(100, 50), nn.Linear(50, 10)),
nn.Linear(10, 1),
)
params = TensorDict(dict(module.named_parameters()), []).unflatten_keys()
print(params)
TensorDict(
fields={
0: TensorDict(
fields={
0: TensorDict(
fields={
bias: Parameter(shape=torch.Size([50]), device=cpu, dtype=torch.float32, is_shared=False),
weight: Parameter(shape=torch.Size([50, 100]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([]),
device=None,
is_shared=False),
1: TensorDict(
fields={
bias: Parameter(shape=torch.Size([10]), device=cpu, dtype=torch.float32, is_shared=False),
weight: Parameter(shape=torch.Size([10, 50]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([]),
device=None,
is_shared=False)},
batch_size=torch.Size([]),
device=None,
is_shared=False),
1: TensorDict(
fields={
bias: Parameter(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
weight: Parameter(shape=torch.Size([1, 10]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([]),
device=None,
is_shared=False)},
batch_size=torch.Size([]),
device=None,
is_shared=False)
選擇和排除鍵¶
我們可以使用 TensorDict.select 方法獲取一個包含鍵子集的新 TensorDict,該方法返回一個僅包含指定鍵的新 TensorDict,或者使用 :meth: TensorDict.exclude <tensordict.TensorDict.exclude> 方法,該方法返回一個省略指定鍵的新 TensorDict。
print("Select:")
print(tensordict.select("a", ("nested", "a")), end="\n\n")
print("Exclude:")
print(tensordict.exclude(("nested", "b"), ("nested", "double_nested")))
Select:
TensorDict(
fields={
a: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
nested: TensorDict(
fields={
a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([2, 3]),
device=None,
is_shared=False)},
batch_size=torch.Size([2]),
device=None,
is_shared=False)
Exclude:
TensorDict(
fields={
a: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
nested: TensorDict(
fields={
a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([2, 3]),
device=None,
is_shared=False)},
batch_size=torch.Size([2]),
device=None,
is_shared=False)
指令碼總執行時間: (0 分鐘 0.009 秒)