PrioritizedSampler¶
- class torchrl.data.replay_buffers.PrioritizedSampler(max_capacity: int, alpha: float, beta: float, eps: float = 1e-08, dtype: dtype =torch.float32, reduction: str = 'max', max_priority_within_buffer: bool = False)[source]¶
用於回放緩衝區的優先採樣器。
發表在 “Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D. 2015. Prioritized experience replay.” 中 (https://arxiv.org/abs/1511.05952)
- 引數:
max_capacity (int) – 緩衝區的最大容量。
alpha (
float) – 指數 α 決定了優先順序的使用程度,α = 0 對應於均勻取樣的情況。beta (
float) – 重要性取樣的負指數。eps (
float, optional) – 新增到優先順序上的 delta 值,以確保緩衝區不包含零優先順序。預設為 1e-8。reduction (str, optional) – 用於多維 tensordict(即儲存的軌跡)的縮減方法。可以是 “max”、“min”、“median” 或 “mean” 之一。
max_priority_within_buffer (bool, optional) – 如果為
True,則在緩衝區內跟蹤最大優先順序。如果為False,則最大優先順序跟蹤自採樣器例項化以來的最大值。
示例
>>> from torchrl.data.replay_buffers import ReplayBuffer, LazyTensorStorage, PrioritizedSampler >>> from tensordict import TensorDict >>> rb = ReplayBuffer(storage=LazyTensorStorage(10), sampler=PrioritizedSampler(max_capacity=10, alpha=1.0, beta=1.0)) >>> priority = torch.tensor([0, 1000]) >>> data_0 = TensorDict({"reward": 0, "obs": [0], "action": [0], "priority": priority[0]}, []) >>> data_1 = TensorDict({"reward": 1, "obs": [1], "action": [2], "priority": priority[1]}, []) >>> rb.add(data_0) >>> rb.add(data_1) >>> rb.update_priority(torch.tensor([0, 1]), priority=priority) >>> sample, info = rb.sample(10, return_info=True) >>> print(sample) TensorDict( fields={ action: Tensor(shape=torch.Size([10, 1]), device=cpu, dtype=torch.int64, is_shared=False), obs: Tensor(shape=torch.Size([10, 1]), device=cpu, dtype=torch.int64, is_shared=False), priority: Tensor(shape=torch.Size([10]), device=cpu, dtype=torch.int64, is_shared=False), reward: Tensor(shape=torch.Size([10]), device=cpu, dtype=torch.int64, is_shared=False)}, batch_size=torch.Size([10]), device=cpu, is_shared=False) >>> print(info) {'_weight': array([1.e-11, 1.e-11, 1.e-11, 1.e-11, 1.e-11, 1.e-11, 1.e-11, 1.e-11, 1.e-11, 1.e-11], dtype=float32), 'index': array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1])}
注意
使用
TensorDictReplayBuffer可以簡化更新優先順序的過程>>> from torchrl.data.replay_buffers import TensorDictReplayBuffer as TDRB, LazyTensorStorage, PrioritizedSampler >>> from tensordict import TensorDict >>> rb = TDRB( ... storage=LazyTensorStorage(10), ... sampler=PrioritizedSampler(max_capacity=10, alpha=1.0, beta=1.0), ... priority_key="priority", # This kwarg isn't present in regular RBs ... ) >>> priority = torch.tensor([0, 1000]) >>> data_0 = TensorDict({"reward": 0, "obs": [0], "action": [0], "priority": priority[0]}, []) >>> data_1 = TensorDict({"reward": 1, "obs": [1], "action": [2], "priority": priority[1]}, []) >>> data = torch.stack([data_0, data_1]) >>> rb.extend(data) >>> rb.update_priority(data) # Reads the "priority" key as indicated in the constructor >>> sample, info = rb.sample(10, return_info=True) >>> print(sample['index']) # The index is packed with the tensordict tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
- update_priority(index: Union[int, torch.Tensor], priority: Union[float, torch.Tensor], *, storage: TensorStorage | None = None) None[source]¶
更新索引指向的資料的優先順序。
- 引數:
index (int or torch.Tensor) – 需要更新的優先順序的索引。
priority (Number or torch.Tensor) – 索引元素的新的優先順序。
- 關鍵字引數:
storage (Storage, optional) – 用於將 Nd 索引大小對映到 sum_tree 和 min_tree 的 1d 大小的儲存。僅當
index.ndim > 2時需要。