D4RLExperienceReplay¶
- class torchrl.data.datasets.D4RLExperienceReplay(dataset_id, batch_size: int, sampler: Sampler | None = None, writer: Writer | None = None, collate_fn: Callable | None = None, pin_memory: bool = False, prefetch: int | None = None, transform: 'torchrl.envs.Transform' | None = None, split_trajs: bool = False, from_env: bool = False, use_truncated_as_done: bool = True, direct_download: bool = None, terminate_on_end: bool = None, download: bool = True, root: str | Path | None = None, **env_kwargs)[source]¶
一個用於 D4RL 的經驗回放類。
要安裝 D4RL,請按照官方倉庫中的說明進行操作。
資料格式遵循 TED 約定。回放緩衝區在 D4RLExperienceReplay.specs 下包含環境規範。
如果存在,元資料將寫入
D4RLExperienceReplay.metadata中,並從資料集中排除。使用
done = terminated | truncated重構轉換,並將“done”狀態的("next", "observation")置零。- 引數:
dataset_id (str) – 要從中獲取資料的 D4RL 環境的 dataset_id。
batch_size (int) – 取樣期間使用的批次大小。
sampler (Sampler, 可選) – 要使用的取樣器。如果未提供,將使用預設的 RandomSampler()。
writer (Writer, 可選) – 要使用的寫入器。如果未提供,將使用預設的
ImmutableDatasetWriter。collate_fn (callable, 可選) – 合併樣本列表以形成 Tensor(s)/輸出的迷你批次。在從對映式資料集進行批次載入時使用。
pin_memory (bool) – 是否應在 rb 樣本上呼叫 pin_memory()。
prefetch (int, 可選) – 使用多執行緒預取的下一批次數量。
transform (Transform, 可選) – 呼叫 sample() 時要執行的 Transform。要鏈式組合 transforms,請使用
Compose類。split_trajs (bool, 可選) – 如果為
True,軌跡將沿第一維分割並進行填充以具有匹配的形狀。要分割軌跡,將使用"done"訊號,該訊號透過done = truncated | terminated恢復。換句話說,假定任何truncated或terminated訊號等同於軌跡的結束。對於來自D4RL的某些資料集,這可能不成立。使用者應在此使用split_trajs時做出準確的選擇。預設為False。from_env (bool, 可選) –
如果為
True,將使用env.get_dataset()獲取資料集。否則將使用d4rl.qlearning_dataset()。預設為True。注意
使用
from_env=False將比from_env=True提供更少的資料。例如,資訊鍵將被忽略。通常,from_env=False且terminate_on_end=True會得到與from_env=True相同的結果,但後者包含前者不具備的元資料和資訊條目。注意
在
from_env=True和from_env=False中的鍵可能意外不同。特別是,“truncated”鍵(用於確定 episode 的結束)在from_env=False時可能不存在,而在其他情況下存在,導致啟用traj_splits時切片不同。direct_download (bool) – 如果為
True,資料將直接下載,無需 D4RL。如果為None,如果在環境中存在d4rl,將使用它下載資料集,否則將回退到direct_download=True進行下載。這與from_env=True不相容。預設為None。use_truncated_as_done (bool, 可選) – 如果為
True,則done = terminated | truncated。否則,僅使用terminated鍵。預設為True。terminate_on_end (bool, 可選) – 在軌跡的最後一個時間步上設定
done=True。預設為False,並將丟棄每個軌跡中的最後一個時間步。這僅與direct_download=False一起使用。root (Path 或 str, 可選) – D4RL 資料集的根目錄。實際的資料集記憶體對映檔案將儲存在 <root>/<dataset_id> 下。如果未提供,預設為 ~/.cache/torchrl/atari.d4rl`。
download (bool, 可選) – 如果找不到資料集,是否應下載。預設為
True。**env_kwargs (鍵值對) –
d4rl.qlearning_dataset()的額外 kwargs。
示例
>>> from torchrl.data.datasets.d4rl import D4RLExperienceReplay >>> from torchrl.envs import ObservationNorm >>> data = D4RLExperienceReplay("maze2d-umaze-v1", 128) >>> # we can append transforms to the dataset >>> data.append_transform(ObservationNorm(loc=-1, scale=1.0, in_keys=["observation"])) >>> data.sample(128)
- add(data: TensorDictBase) int¶
向回放緩衝區新增單個元素。
- 引數:
data (Any) – 要新增到回放緩衝區的資料
- 返回:
資料在回放緩衝區中的索引。
- append_transform(transform: Transform, *, invert: bool = False) ReplayBuffer¶
在末尾追加 transform。
呼叫 sample 時,Transforms 按順序應用。
- 引數:
transform (Transform) – 要追加的 transform
- 關鍵字引數:
invert (bool, 可選) – 如果為
True,transform 將被反轉(寫入期間呼叫 forward,讀取期間呼叫 inverse)。預設為False。
示例
>>> rb = ReplayBuffer(storage=LazyMemmapStorage(10), batch_size=4) >>> data = TensorDict({"a": torch.zeros(10)}, [10]) >>> def t(data): ... data += 1 ... return data >>> rb.append_transform(t, invert=True) >>> rb.extend(data) >>> assert (data == 1).all()
- property data_path: Path¶
資料集路徑,包括分割資訊。
- property data_path_root: Path¶
資料集根路徑。
- delete()¶
從磁碟刪除資料集儲存。
- dumps(path)¶
將回放緩衝區儲存到磁碟上的指定路徑。
- 引數:
path (Path 或 str) – 儲存回放緩衝區的路徑。
示例
>>> import tempfile >>> import tqdm >>> from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer >>> from torchrl.data.replay_buffers.samplers import PrioritizedSampler, RandomSampler >>> import torch >>> from tensordict import TensorDict >>> # Build and populate the replay buffer >>> S = 1_000_000 >>> sampler = PrioritizedSampler(S, 1.1, 1.0) >>> # sampler = RandomSampler() >>> storage = LazyMemmapStorage(S) >>> rb = TensorDictReplayBuffer(storage=storage, sampler=sampler) >>> >>> for _ in tqdm.tqdm(range(100)): ... td = TensorDict({"obs": torch.randn(100, 3, 4), "next": {"obs": torch.randn(100, 3, 4)}, "td_error": torch.rand(100)}, [100]) ... rb.extend(td) ... sample = rb.sample(32) ... rb.update_tensordict_priority(sample) >>> # save and load the buffer >>> with tempfile.TemporaryDirectory() as tmpdir: ... rb.dumps(tmpdir) ... ... sampler = PrioritizedSampler(S, 1.1, 1.0) ... # sampler = RandomSampler() ... storage = LazyMemmapStorage(S) ... rb_load = TensorDictReplayBuffer(storage=storage, sampler=sampler) ... rb_load.loads(tmpdir) ... assert len(rb) == len(rb_load)
- empty()¶
清空回放緩衝區並將游標重置為 0。
- extend(tensordicts: TensorDictBase) Tensor¶
使用可迭代物件中包含的一個或多個元素擴充套件回放緩衝區。
如果存在,將呼叫 inverse transforms。`
- 引數:
data (iterable) – 要新增到回放緩衝區的資料集合。
- 返回:
新增到回放緩衝區的資料的索引。
警告
extend()在處理值列表時可能存在歧義的簽名,該列表應被解釋為 PyTree(在這種情況下,列表中的所有元素都將放入儲存中 PyTree 的一個切片中)或要逐個新增的值列表。為了解決這個問題,TorchRL 明確區分了 list 和 tuple:tuple 將被視為 PyTree,list(在根級別)將被解釋為要逐個新增到緩衝區的值堆疊。對於ListStorage例項,只能提供未繫結元素(非 PyTrees)。
- insert_transform(index: int, transform: Transform, *, invert: bool = False) ReplayBuffer¶
插入 transform。
呼叫 sample 時,Transforms 按順序執行。
- 引數:
index (int) – 插入 transform 的位置。
transform (Transform) – 要追加的 transform
- 關鍵字引數:
invert (bool, 可選) – 如果為
True,transform 將被反轉(寫入期間呼叫 forward,讀取期間呼叫 inverse)。預設為False。
- loads(path)¶
載入給定路徑的回放緩衝區狀態。
緩衝區應具有匹配的元件,並使用
dumps()儲存。- 引數:
path (Path 或 str) – 儲存回放緩衝區的路徑。
有關更多資訊,請參閱
dumps()。
- preprocess(fn: Callable[[TensorDictBase], TensorDictBase], dim: int = 0, num_workers: int | None = None, *, chunksize: int | None = None, num_chunks: int | None = None, pool: mp.Pool | None = None, generator: torch.Generator | None = None, max_tasks_per_child: int | None = None, worker_threads: int = 1, index_with_generator: bool = False, pbar: bool = False, mp_start_method: str | None = None, num_frames: int | None = None, dest: str | Path) TensorStorage¶
預處理資料集並返回包含格式化資料的新儲存。
資料轉換必須是單一的(作用於資料集中的單個樣本)。
引數和關鍵字引數將被轉發到
map()方法。之後可以使用
delete()方法刪除該資料集。- 關鍵字引數:
dest (path 或 等效型別) – 新資料集所在位置的路徑。
num_frames (int, 可選) – 如果提供,將僅轉換前 num_frames 幀。這在初次除錯轉換時很有用。
返回: 可用於
ReplayBuffer例項中的新儲存。示例
>>> from torchrl.data.datasets import MinariExperienceReplay >>> >>> data = MinariExperienceReplay( ... list(MinariExperienceReplay.available_datasets)[0], ... batch_size=32 ... ) >>> print(data) MinariExperienceReplay( storages=TensorStorage(TensorDict( fields={ action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True), episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True), info: TensorDict( fields={ distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True), qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True), reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True), x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), next: TensorDict( fields={ done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), info: TensorDict( fields={ distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True), qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True), reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True), x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), observation: TensorDict( fields={ achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True), terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), observation: TensorDict( fields={ achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)), samplers=RandomSampler, writers=ImmutableDatasetWriter(), batch_size=32, transform=Compose( ), collate_fn=<function _collate_id at 0x120e21dc0>) >>> from torchrl.envs import CatTensors, Compose >>> from tempfile import TemporaryDirectory >>> >>> cat_tensors = CatTensors( ... in_keys=[("observation", "observation"), ("observation", "achieved_goal"), ... ("observation", "desired_goal")], ... out_key="obs" ... ) >>> cat_next_tensors = CatTensors( ... in_keys=[("next", "observation", "observation"), ... ("next", "observation", "achieved_goal"), ... ("next", "observation", "desired_goal")], ... out_key=("next", "obs") ... ) >>> t = Compose(cat_tensors, cat_next_tensors) >>> >>> def func(td): ... td = td.select( ... "action", ... "episode", ... ("next", "done"), ... ("next", "observation"), ... ("next", "reward"), ... ("next", "terminated"), ... ("next", "truncated"), ... "observation" ... ) ... td = t(td) ... return td >>> with TemporaryDirectory() as tmpdir: ... new_storage = data.preprocess(func, num_workers=4, pbar=True, mp_start_method="fork", dest=tmpdir) ... rb = ReplayBuffer(storage=new_storage) ... print(rb) ReplayBuffer( storage=TensorStorage( data=TensorDict( fields={ action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True), episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True), next: TensorDict( fields={ done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True), observation: TensorDict( fields={ }, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True), terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True), observation: TensorDict( fields={ }, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), shape=torch.Size([1000000]), len=1000000, max_size=1000000), sampler=RandomSampler(), writer=RoundRobinWriter(cursor=0, full_storage=True), batch_size=None, collate_fn=<function _collate_id at 0x168406fc0>)
- register_load_hook(hook: Callable[[Any], Any])¶
為儲存註冊一個載入鉤子。
注意
目前,鉤子在儲存重放緩衝區時不會被序列化:每次建立緩衝區時必須手動重新初始化它們。
- register_save_hook(hook: Callable[[Any], Any])¶
為儲存註冊一個儲存鉤子。
注意
目前,鉤子在儲存重放緩衝區時不會被序列化:每次建立緩衝區時必須手動重新初始化它們。
- sample(batch_size: int | None = None, return_info: bool = False, include_info: bool = None) TensorDictBase¶
從重放緩衝區中取樣一個數據批次。
使用 Sampler 取樣索引,並從 Storage 中檢索它們。
- 引數:
batch_size (int, 可選) – 要收集的資料的大小。如果未提供,此方法將按照取樣器指定的批次大小進行取樣。
return_info (bool) – 是否返回資訊。如果為 True,結果是元組 (data, info)。如果為 False,結果是資料。
- 返回:
一個包含在重放緩衝區中選定資料批次的 TensorDict。如果 return_info 標誌設為 True,則是一個包含此 TensorDict 和資訊的元組。
- set_storage(storage: Storage, collate_fn: Callable | None = None)¶
在重放緩衝區中設定新的儲存,並返回先前的儲存。
- 引數:
storage (Storage) – 緩衝區的新儲存。
collate_fn (callable, 可選) – 如果提供,collate_fn 將被設定為此值。否則,它將重置為預設值。
- 屬性 write_count¶
透過 add 和 extend 方法目前已寫入緩衝區中的總專案數。