快捷方式

D4RLExperienceReplay

class torchrl.data.datasets.D4RLExperienceReplay(dataset_id, batch_size: int, sampler: Sampler | None = None, writer: Writer | None = None, collate_fn: Callable | None = None, pin_memory: bool = False, prefetch: int | None = None, transform: 'torchrl.envs.Transform' | None = None, split_trajs: bool = False, from_env: bool = False, use_truncated_as_done: bool = True, direct_download: bool = None, terminate_on_end: bool = None, download: bool = True, root: str | Path | None = None, **env_kwargs)[source]

一個用於 D4RL 的經驗回放類。

要安裝 D4RL,請按照官方倉庫中的說明進行操作。

資料格式遵循 TED 約定。回放緩衝區在 D4RLExperienceReplay.specs 下包含環境規範。

如果存在,元資料將寫入 D4RLExperienceReplay.metadata 中,並從資料集中排除。

使用 done = terminated | truncated 重構轉換,並將“done”狀態的 ("next", "observation") 置零。

引數:
  • dataset_id (str) – 要從中獲取資料的 D4RL 環境的 dataset_id。

  • batch_size (int) – 取樣期間使用的批次大小。

  • sampler (Sampler, 可選) – 要使用的取樣器。如果未提供,將使用預設的 RandomSampler()。

  • writer (Writer, 可選) – 要使用的寫入器。如果未提供,將使用預設的 ImmutableDatasetWriter

  • collate_fn (callable, 可選) – 合併樣本列表以形成 Tensor(s)/輸出的迷你批次。在從對映式資料集進行批次載入時使用。

  • pin_memory (bool) – 是否應在 rb 樣本上呼叫 pin_memory()。

  • prefetch (int, 可選) – 使用多執行緒預取的下一批次數量。

  • transform (Transform, 可選) – 呼叫 sample() 時要執行的 Transform。要鏈式組合 transforms,請使用 Compose 類。

  • split_trajs (bool, 可選) – 如果為 True,軌跡將沿第一維分割並進行填充以具有匹配的形狀。要分割軌跡,將使用 "done" 訊號,該訊號透過 done = truncated | terminated 恢復。換句話說,假定任何 truncatedterminated 訊號等同於軌跡的結束。對於來自 D4RL 的某些資料集,這可能不成立。使用者應在此使用 split_trajs 時做出準確的選擇。預設為 False

  • from_env (bool, 可選) –

    如果為 True,將使用 env.get_dataset() 獲取資料集。否則將使用 d4rl.qlearning_dataset()。預設為 True

    注意

    使用 from_env=False 將比 from_env=True 提供更少的資料。例如,資訊鍵將被忽略。通常,from_env=Falseterminate_on_end=True 會得到與 from_env=True 相同的結果,但後者包含前者不具備的元資料和資訊條目。

    注意

    from_env=Truefrom_env=False 中的鍵可能意外不同。特別是,“truncated”鍵(用於確定 episode 的結束)在 from_env=False 時可能不存在,而在其他情況下存在,導致啟用 traj_splits 時切片不同。

  • direct_download (bool) – 如果為 True,資料將直接下載,無需 D4RL。如果為 None,如果在環境中存在 d4rl,將使用它下載資料集,否則將回退到 direct_download=True 進行下載。這與 from_env=True 不相容。預設為 None

  • use_truncated_as_done (bool, 可選) – 如果為 True,則 done = terminated | truncated。否則,僅使用 terminated 鍵。預設為 True

  • terminate_on_end (bool, 可選) – 在軌跡的最後一個時間步上設定 done=True。預設為 False,並將丟棄每個軌跡中的最後一個時間步。這僅與 direct_download=False 一起使用。

  • root (Pathstr, 可選) – D4RL 資料集的根目錄。實際的資料集記憶體對映檔案將儲存在 <root>/<dataset_id> 下。如果未提供,預設為 ~/.cache/torchrl/atari.d4rl`。

  • download (bool, 可選) – 如果找不到資料集,是否應下載。預設為 True

  • **env_kwargs (鍵值對) – d4rl.qlearning_dataset() 的額外 kwargs。

示例

>>> from torchrl.data.datasets.d4rl import D4RLExperienceReplay
>>> from torchrl.envs import ObservationNorm
>>> data = D4RLExperienceReplay("maze2d-umaze-v1", 128)
>>> # we can append transforms to the dataset
>>> data.append_transform(ObservationNorm(loc=-1, scale=1.0, in_keys=["observation"]))
>>> data.sample(128)
add(data: TensorDictBase) int

向回放緩衝區新增單個元素。

引數:

data (Any) – 要新增到回放緩衝區的資料

返回:

資料在回放緩衝區中的索引。

append_transform(transform: Transform, *, invert: bool = False) ReplayBuffer

在末尾追加 transform。

呼叫 sample 時,Transforms 按順序應用。

引數:

transform (Transform) – 要追加的 transform

關鍵字引數:

invert (bool, 可選) – 如果為 True,transform 將被反轉(寫入期間呼叫 forward,讀取期間呼叫 inverse)。預設為 False

示例

>>> rb = ReplayBuffer(storage=LazyMemmapStorage(10), batch_size=4)
>>> data = TensorDict({"a": torch.zeros(10)}, [10])
>>> def t(data):
...     data += 1
...     return data
>>> rb.append_transform(t, invert=True)
>>> rb.extend(data)
>>> assert (data == 1).all()
property data_path: Path

資料集路徑,包括分割資訊。

property data_path_root: Path

資料集根路徑。

delete()

從磁碟刪除資料集儲存。

dump(*args, **kwargs)

dumps() 的別名。

dumps(path)

將回放緩衝區儲存到磁碟上的指定路徑。

引數:

path (Pathstr) – 儲存回放緩衝區的路徑。

示例

>>> import tempfile
>>> import tqdm
>>> from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer
>>> from torchrl.data.replay_buffers.samplers import PrioritizedSampler, RandomSampler
>>> import torch
>>> from tensordict import TensorDict
>>> # Build and populate the replay buffer
>>> S = 1_000_000
>>> sampler = PrioritizedSampler(S, 1.1, 1.0)
>>> # sampler = RandomSampler()
>>> storage = LazyMemmapStorage(S)
>>> rb = TensorDictReplayBuffer(storage=storage, sampler=sampler)
>>>
>>> for _ in tqdm.tqdm(range(100)):
...     td = TensorDict({"obs": torch.randn(100, 3, 4), "next": {"obs": torch.randn(100, 3, 4)}, "td_error": torch.rand(100)}, [100])
...     rb.extend(td)
...     sample = rb.sample(32)
...     rb.update_tensordict_priority(sample)
>>> # save and load the buffer
>>> with tempfile.TemporaryDirectory() as tmpdir:
...     rb.dumps(tmpdir)
...
...     sampler = PrioritizedSampler(S, 1.1, 1.0)
...     # sampler = RandomSampler()
...     storage = LazyMemmapStorage(S)
...     rb_load = TensorDictReplayBuffer(storage=storage, sampler=sampler)
...     rb_load.loads(tmpdir)
...     assert len(rb) == len(rb_load)
empty()

清空回放緩衝區並將游標重置為 0。

extend(tensordicts: TensorDictBase) Tensor

使用可迭代物件中包含的一個或多個元素擴充套件回放緩衝區。

如果存在,將呼叫 inverse transforms。`

引數:

data (iterable) – 要新增到回放緩衝區的資料集合。

返回:

新增到回放緩衝區的資料的索引。

警告

extend() 在處理值列表時可能存在歧義的簽名,該列表應被解釋為 PyTree(在這種情況下,列表中的所有元素都將放入儲存中 PyTree 的一個切片中)或要逐個新增的值列表。為了解決這個問題,TorchRL 明確區分了 list 和 tuple:tuple 將被視為 PyTree,list(在根級別)將被解釋為要逐個新增到緩衝區的值堆疊。對於 ListStorage 例項,只能提供未繫結元素(非 PyTrees)。

insert_transform(index: int, transform: Transform, *, invert: bool = False) ReplayBuffer

插入 transform。

呼叫 sample 時,Transforms 按順序執行。

引數:
  • index (int) – 插入 transform 的位置。

  • transform (Transform) – 要追加的 transform

關鍵字引數:

invert (bool, 可選) – 如果為 True,transform 將被反轉(寫入期間呼叫 forward,讀取期間呼叫 inverse)。預設為 False

load(*args, **kwargs)

loads() 的別名。

loads(path)

載入給定路徑的回放緩衝區狀態。

緩衝區應具有匹配的元件,並使用 dumps() 儲存。

引數:

path (Pathstr) – 儲存回放緩衝區的路徑。

有關更多資訊,請參閱 dumps()

preprocess(fn: Callable[[TensorDictBase], TensorDictBase], dim: int = 0, num_workers: int | None = None, *, chunksize: int | None = None, num_chunks: int | None = None, pool: mp.Pool | None = None, generator: torch.Generator | None = None, max_tasks_per_child: int | None = None, worker_threads: int = 1, index_with_generator: bool = False, pbar: bool = False, mp_start_method: str | None = None, num_frames: int | None = None, dest: str | Path) TensorStorage

預處理資料集並返回包含格式化資料的新儲存。

資料轉換必須是單一的(作用於資料集中的單個樣本)。

引數和關鍵字引數將被轉發到 map() 方法。

之後可以使用 delete() 方法刪除該資料集。

關鍵字引數:
  • dest (path等效型別) – 新資料集所在位置的路徑。

  • num_frames (int, 可選) – 如果提供,將僅轉換前 num_frames 幀。這在初次除錯轉換時很有用。

返回: 可用於 ReplayBuffer 例項中的新儲存。

示例

>>> from torchrl.data.datasets import MinariExperienceReplay
>>>
>>> data = MinariExperienceReplay(
...     list(MinariExperienceReplay.available_datasets)[0],
...     batch_size=32
...     )
>>> print(data)
MinariExperienceReplay(
    storages=TensorStorage(TensorDict(
        fields={
            action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True),
            episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True),
            info: TensorDict(
                fields={
                    distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                    qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True),
                    qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True),
                    reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True),
                    x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)},
                batch_size=torch.Size([1000000]),
                device=cpu,
                is_shared=False),
            next: TensorDict(
                fields={
                    done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                    info: TensorDict(
                        fields={
                            distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                            qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True),
                            qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True),
                            reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True),
                            x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)},
                        batch_size=torch.Size([1000000]),
                        device=cpu,
                        is_shared=False),
                    observation: TensorDict(
                        fields={
                            achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                            desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                            observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)},
                        batch_size=torch.Size([1000000]),
                        device=cpu,
                        is_shared=False),
                    reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True),
                    terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                    truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)},
                batch_size=torch.Size([1000000]),
                device=cpu,
                is_shared=False),
            observation: TensorDict(
                fields={
                    achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                    desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                    observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)},
                batch_size=torch.Size([1000000]),
                device=cpu,
                is_shared=False)},
        batch_size=torch.Size([1000000]),
        device=cpu,
        is_shared=False)),
    samplers=RandomSampler,
    writers=ImmutableDatasetWriter(),
batch_size=32,
transform=Compose(
),
collate_fn=<function _collate_id at 0x120e21dc0>)
>>> from torchrl.envs import CatTensors, Compose
>>> from tempfile import TemporaryDirectory
>>>
>>> cat_tensors = CatTensors(
...     in_keys=[("observation", "observation"), ("observation", "achieved_goal"),
...              ("observation", "desired_goal")],
...     out_key="obs"
...     )
>>> cat_next_tensors = CatTensors(
...     in_keys=[("next", "observation", "observation"),
...              ("next", "observation", "achieved_goal"),
...              ("next", "observation", "desired_goal")],
...     out_key=("next", "obs")
...     )
>>> t = Compose(cat_tensors, cat_next_tensors)
>>>
>>> def func(td):
...     td = td.select(
...         "action",
...         "episode",
...         ("next", "done"),
...         ("next", "observation"),
...         ("next", "reward"),
...         ("next", "terminated"),
...         ("next", "truncated"),
...         "observation"
...         )
...     td = t(td)
...     return td
>>> with TemporaryDirectory() as tmpdir:
...     new_storage = data.preprocess(func, num_workers=4, pbar=True, mp_start_method="fork", dest=tmpdir)
...     rb = ReplayBuffer(storage=new_storage)
...     print(rb)
ReplayBuffer(
    storage=TensorStorage(
        data=TensorDict(
            fields={
                action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True),
                episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True),
                next: TensorDict(
                    fields={
                        done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                        obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True),
                        observation: TensorDict(
                            fields={
                            },
                            batch_size=torch.Size([1000000]),
                            device=cpu,
                            is_shared=False),
                        reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True),
                        terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                        truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)},
                    batch_size=torch.Size([1000000]),
                    device=cpu,
                    is_shared=False),
                obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True),
                observation: TensorDict(
                    fields={
                    },
                    batch_size=torch.Size([1000000]),
                    device=cpu,
                    is_shared=False)},
            batch_size=torch.Size([1000000]),
            device=cpu,
            is_shared=False),
        shape=torch.Size([1000000]),
        len=1000000,
        max_size=1000000),
    sampler=RandomSampler(),
    writer=RoundRobinWriter(cursor=0, full_storage=True),
    batch_size=None,
    collate_fn=<function _collate_id at 0x168406fc0>)
register_load_hook(hook: Callable[[Any], Any])

為儲存註冊一個載入鉤子。

注意

目前,鉤子在儲存重放緩衝區時不會被序列化:每次建立緩衝區時必須手動重新初始化它們。

register_save_hook(hook: Callable[[Any], Any])

為儲存註冊一個儲存鉤子。

注意

目前,鉤子在儲存重放緩衝區時不會被序列化:每次建立緩衝區時必須手動重新初始化它們。

sample(batch_size: int | None = None, return_info: bool = False, include_info: bool = None) TensorDictBase

從重放緩衝區中取樣一個數據批次。

使用 Sampler 取樣索引,並從 Storage 中檢索它們。

引數:
  • batch_size (int, 可選) – 要收集的資料的大小。如果未提供,此方法將按照取樣器指定的批次大小進行取樣。

  • return_info (bool) – 是否返回資訊。如果為 True,結果是元組 (data, info)。如果為 False,結果是資料。

返回:

一個包含在重放緩衝區中選定資料批次的 TensorDict。如果 return_info 標誌設為 True,則是一個包含此 TensorDict 和資訊的元組。

屬性 sampler

重放緩衝區的取樣器。

取樣器必須是 Sampler 的一個例項。

save(*args, **kwargs)

dumps() 的別名。

set_sampler(sampler: Sampler)

在重放緩衝區中設定新的取樣器,並返回先前的取樣器。

set_storage(storage: Storage, collate_fn: Callable | None = None)

在重放緩衝區中設定新的儲存,並返回先前的儲存。

引數:
  • storage (Storage) – 緩衝區的新儲存。

  • collate_fn (callable, 可選) – 如果提供,collate_fn 將被設定為此值。否則,它將重置為預設值。

set_writer(writer: Writer)

在重放緩衝區中設定新的寫入器,並返回先前的寫入器。

屬性 storage

重放緩衝區的儲存。

儲存必須是 Storage 的一個例項。

屬性 write_count

透過 add 和 extend 方法目前已寫入緩衝區中的總專案數。

屬性 writer

重放緩衝區的寫入器。

寫入器必須是 Writer 的一個例項。

文件

訪問全面的 PyTorch 開發者文件

檢視文件

教程

獲取針對初學者和高階開發者的深入教程

檢視教程

資源

查詢開發資源並獲取問題解答

檢視資源