快捷方式

GenDGRLExperienceReplay

class torchrl.data.datasets.GenDGRLExperienceReplay(dataset_id: str, batch_size: int = None, *, download: bool = True, root: str | None = None, **kwargs)[原始碼]

Gen-DGRL 經驗回放資料集。

此資料集配套論文“離線強化學習中的泛化差距”提供。

Arxiv: https://arxiv.org/abs/2312.05742

GitHub: https://github.com/facebookresearch/gen_dgrl

資料格式遵循 TED 規範

此類提供對 ProcGen 資料集的訪問。在 GenDGRLExperienceReplay.available_datasets 中註冊的每個 dataset_id 包含一個特定任務(“bigfish”“bossfight” 等),該任務透過逗號(“bigfish-1M_E” 等)與一個類別(“1M_E”“1M_S” 等)分開。

在下載和準備過程中,資料以下載為 .tar 檔案,其中每個軌跡都獨立儲存在一個 .npy 檔案中。這些檔案會被提取,寫入連續的 mmap 張量,然後清除。此過程每個資料集可能需要幾分鐘。在叢集上,建議首先在不同的 worker 或程序上單獨對不同資料集執行下載和預處理,然後再啟動訓練指令碼。

引數:
  • dataset_id (str) – 要下載的資料集。必須是 GenDGRLExperienceReplay.available_datasets 的一部分。

  • batch_size (int, optional) – 取樣期間使用的批次大小。如果需要,可以透過 data.sample(batch_size) 覆蓋此值。

關鍵字引數:
  • root (Path or str, optional) – GenDGRLExperienceReplay 資料集的根目錄。實際的資料集記憶體對映檔案將儲存在 <root>/<dataset_id> 下。如果未提供,則預設為 ~/.cache/torchrl/atari.gen_dgrl`。

  • download (bool or str, optional) – 如果資料集未找到,是否應該下載。預設為 True。也可以將 download 設定為 "force",在這種情況下將覆蓋已下載的資料。

  • sampler (Sampler, optional) – 要使用的取樣器。如果未提供,將使用預設的 RandomSampler()。

  • writer (Writer, optional) – 要使用的寫入器。如果未提供,將使用預設的 RoundRobinWriter()。

  • collate_fn (callable, optional) – 合併樣本列表以形成 Tensor(s)/輸出的小批次。在從對映式資料集批次載入時使用。

  • pin_memory (bool) – 是否應在 rb 樣本上呼叫 pin_memory()。

  • prefetch (int, optional) – 使用多執行緒預取下一個批次的數量。

  • transform (Transform, optional) – 在呼叫 sample() 時執行的轉換。要鏈式應用轉換,請使用 Compose 類。

變數:

available_datasets – 可接受的待下載條目列表。這些名稱對應於 huggingface 資料集倉庫中的目錄路徑。如果可能,該列表將從 huggingface 動態檢索。如果沒有網際網路連線,則將使用快取的版本。

示例

>>> import torch
>>> torch.manual_seed(0)
>>> from torchrl.data.datasets import GenDGRLExperienceReplay
>>> d = GenDGRLExperienceReplay("bigfish-1M_E", batch_size=32)
>>> for batch in d:
...     break
>>> print(batch)
add(data: TensorDictBase) int

向經驗回放緩衝區新增單個元素。

引數:

data (Any) – 要新增到經驗回放緩衝區的資料

返回:

資料在經驗回放緩衝區中的索引。

append_transform(transform: Transform, *, invert: bool = False) ReplayBuffer

在末尾追加轉換。

呼叫 sample 時,轉換會按順序應用。

引數:

transform (Transform) – 要追加的轉換

關鍵字引數:

invert (bool, optional) – 如果為 True,則轉換將被反轉(forward 呼叫將在寫入時呼叫,inverse 呼叫將在讀取時呼叫)。預設為 False

示例

>>> rb = ReplayBuffer(storage=LazyMemmapStorage(10), batch_size=4)
>>> data = TensorDict({"a": torch.zeros(10)}, [10])
>>> def t(data):
...     data += 1
...     return data
>>> rb.append_transform(t, invert=True)
>>> rb.extend(data)
>>> assert (data == 1).all()
property data_path

資料集的路徑,包括拆分。

property data_path_root

資料集根目錄的路徑。

delete()

從磁碟刪除資料集儲存。

dump(*args, **kwargs)

dumps() 的別名。

dumps(path)

將經驗回放緩衝區儲存到磁碟上的指定路徑。

引數:

path (Path or str) – 儲存經驗回放緩衝區的路徑。

示例

>>> import tempfile
>>> import tqdm
>>> from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer
>>> from torchrl.data.replay_buffers.samplers import PrioritizedSampler, RandomSampler
>>> import torch
>>> from tensordict import TensorDict
>>> # Build and populate the replay buffer
>>> S = 1_000_000
>>> sampler = PrioritizedSampler(S, 1.1, 1.0)
>>> # sampler = RandomSampler()
>>> storage = LazyMemmapStorage(S)
>>> rb = TensorDictReplayBuffer(storage=storage, sampler=sampler)
>>>
>>> for _ in tqdm.tqdm(range(100)):
...     td = TensorDict({"obs": torch.randn(100, 3, 4), "next": {"obs": torch.randn(100, 3, 4)}, "td_error": torch.rand(100)}, [100])
...     rb.extend(td)
...     sample = rb.sample(32)
...     rb.update_tensordict_priority(sample)
>>> # save and load the buffer
>>> with tempfile.TemporaryDirectory() as tmpdir:
...     rb.dumps(tmpdir)
...
...     sampler = PrioritizedSampler(S, 1.1, 1.0)
...     # sampler = RandomSampler()
...     storage = LazyMemmapStorage(S)
...     rb_load = TensorDictReplayBuffer(storage=storage, sampler=sampler)
...     rb_load.loads(tmpdir)
...     assert len(rb) == len(rb_load)
empty()

清空經驗回放緩衝區並將游標重置為 0。

extend(tensordicts: TensorDictBase) Tensor

使用可迭代物件中包含的一個或多個元素擴充套件經驗回放緩衝區。

如果存在,將呼叫 inverse 轉換。`

引數:

data (iterable) – 要新增到經驗回放緩衝區的資料集合。

返回:

新增到經驗回放緩衝區的資料的索引。

警告

extend() 在處理值列表時可能具有模糊的簽名,可以將其解釋為 PyTree(在這種情況下,列表中的所有元素都將放入儲存中 PyTree 的切片中)或要一次新增一個的值列表。為了解決這個問題,TorchRL 明確區分了 list 和 tuple:tuple 將被視為 PyTree,list(在根級別)將被解釋為堆疊中的值,用於一次向緩衝區新增一個。對於 ListStorage 例項,只能提供未繫結的元素(不能是 PyTrees)。

insert_transform(index: int, transform: Transform, *, invert: bool = False) ReplayBuffer

插入轉換。

呼叫 sample 時,轉換會按順序執行。

引數:
  • index (int) – 插入轉換的位置。

  • transform (Transform) – 要追加的轉換

關鍵字引數:

invert (bool, optional) – 如果為 True,則轉換將被反轉(forward 呼叫將在寫入時呼叫,inverse 呼叫將在讀取時呼叫)。預設為 False

load(*args, **kwargs)

loads() 的別名。

loads(path)

從給定路徑載入經驗回放緩衝區狀態。

緩衝區應具有匹配的元件,並且是使用 dumps() 儲存的。

引數:

path (Path or str) – 經驗回放緩衝區儲存的路徑。

有關更多資訊,請參閱 dumps()

preprocess(fn: Callable[[TensorDictBase], TensorDictBase], dim: int = 0, num_workers: int | None = None, *, chunksize: int | None = None, num_chunks: int | None = None, pool: mp.Pool | None = None, generator: torch.Generator | None =None, max_tasks_per_child: int | None =None, worker_threads: int =1, index_with_generator: bool =False, pbar: bool =False, mp_start_method: str | None =None, num_frames: int | None =None, dest: str | Path) TensorStorage

預處理資料集並返回一個包含格式化資料的新儲存。

資料轉換必須是單元的(作用於資料集的單個樣本)。

引數和關鍵字引數會被轉發到 map()

隨後可以使用 delete() 刪除資料集。

關鍵字引數:
  • dest (path or equivalent) – 新資料集位置的路徑。

  • num_frames (int, optional) – 如果提供,則僅轉換前 num_frames 幀。這對於初步除錯轉換很有用。

返回: 一個新的儲存,可在 ReplayBuffer 例項中使用。

示例

>>> from torchrl.data.datasets import MinariExperienceReplay
>>>
>>> data = MinariExperienceReplay(
...     list(MinariExperienceReplay.available_datasets)[0],
...     batch_size=32
...     )
>>> print(data)
MinariExperienceReplay(
    storages=TensorStorage(TensorDict(
        fields={
            action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True),
            episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True),
            info: TensorDict(
                fields={
                    distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                    qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True),
                    qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True),
                    reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True),
                    x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)},
                batch_size=torch.Size([1000000]),
                device=cpu,
                is_shared=False),
            next: TensorDict(
                fields={
                    done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                    info: TensorDict(
                        fields={
                            distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                            qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True),
                            qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True),
                            reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True),
                            x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)},
                        batch_size=torch.Size([1000000]),
                        device=cpu,
                        is_shared=False),
                    observation: TensorDict(
                        fields={
                            achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                            desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                            observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)},
                        batch_size=torch.Size([1000000]),
                        device=cpu,
                        is_shared=False),
                    reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True),
                    terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                    truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)},
                batch_size=torch.Size([1000000]),
                device=cpu,
                is_shared=False),
            observation: TensorDict(
                fields={
                    achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                    desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                    observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)},
                batch_size=torch.Size([1000000]),
                device=cpu,
                is_shared=False)},
        batch_size=torch.Size([1000000]),
        device=cpu,
        is_shared=False)),
    samplers=RandomSampler,
    writers=ImmutableDatasetWriter(),
batch_size=32,
transform=Compose(
),
collate_fn=<function _collate_id at 0x120e21dc0>)
>>> from torchrl.envs import CatTensors, Compose
>>> from tempfile import TemporaryDirectory
>>>
>>> cat_tensors = CatTensors(
...     in_keys=[("observation", "observation"), ("observation", "achieved_goal"),
...              ("observation", "desired_goal")],
...     out_key="obs"
...     )
>>> cat_next_tensors = CatTensors(
...     in_keys=[("next", "observation", "observation"),
...              ("next", "observation", "achieved_goal"),
...              ("next", "observation", "desired_goal")],
...     out_key=("next", "obs")
...     )
>>> t = Compose(cat_tensors, cat_next_tensors)
>>>
>>> def func(td):
...     td = td.select(
...         "action",
...         "episode",
...         ("next", "done"),
...         ("next", "observation"),
...         ("next", "reward"),
...         ("next", "terminated"),
...         ("next", "truncated"),
...         "observation"
...         )
...     td = t(td)
...     return td
>>> with TemporaryDirectory() as tmpdir:
...     new_storage = data.preprocess(func, num_workers=4, pbar=True, mp_start_method="fork", dest=tmpdir)
...     rb = ReplayBuffer(storage=new_storage)
...     print(rb)
ReplayBuffer(
    storage=TensorStorage(
        data=TensorDict(
            fields={
                action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True),
                episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True),
                next: TensorDict(
                    fields={
                        done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                        obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True),
                        observation: TensorDict(
                            fields={
                            },
                            batch_size=torch.Size([1000000]),
                            device=cpu,
                            is_shared=False),
                        reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True),
                        terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                        truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)},
                    batch_size=torch.Size([1000000]),
                    device=cpu,
                    is_shared=False),
                obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True),
                observation: TensorDict(
                    fields={
                    },
                    batch_size=torch.Size([1000000]),
                    device=cpu,
                    is_shared=False)},
            batch_size=torch.Size([1000000]),
            device=cpu,
            is_shared=False),
        shape=torch.Size([1000000]),
        len=1000000,
        max_size=1000000),
    sampler=RandomSampler(),
    writer=RoundRobinWriter(cursor=0, full_storage=True),
    batch_size=None,
    collate_fn=<function _collate_id at 0x168406fc0>)
register_load_hook(hook: Callable[[Any], Any])

為儲存註冊一個載入鉤子。

注意

當前在儲存經驗回放緩衝區時,鉤子不會被序列化:每次建立緩衝區時都必須手動重新初始化它們。

register_save_hook(hook: Callable[[Any], Any])

為儲存註冊一個儲存鉤子。

注意

當前在儲存經驗回放緩衝區時,鉤子不會被序列化:每次建立緩衝區時都必須手動重新初始化它們。

sample(batch_size: int | None = None, return_info: bool = False, include_info: bool =None) TensorDictBase

從經驗回放緩衝區取樣一個批次的資料。

使用 Sampler 取樣索引,並從 Storage 中檢索它們。

引數:
  • batch_size (int, optional) – 要收集的資料的大小。如果未提供,此方法將根據取樣器指示的批次大小進行取樣。

  • return_info (bool) – 是否返回 info。如果為 True,結果是一個 tuple (data, info)。如果為 False,結果是 data。

返回:

一個包含在經驗回放緩衝區中選定的批次資料的 tensordict。如果設定了 return_info 標誌為 True,則返回一個包含此 tensordict 和 info 的 tuple。

property sampler

經驗回放緩衝區的取樣器。

取樣器必須是 Sampler 的例項。

save(*args, **kwargs)

dumps() 的別名。

set_sampler(sampler: Sampler)

在經驗回放緩衝區中設定新的取樣器並返回先前的取樣器。

set_storage(storage: Storage, collate_fn: Callable | None = None)

在回放緩衝區中設定新的儲存並返回先前的儲存。

引數:
  • storage (Storage) – 緩衝區的新的儲存。

  • collate_fn (callable, optional) – 如果提供,則 collate_fn 將設定為此值。否則它將被重置為預設值。

set_writer(writer: Writer)

在回放緩衝區中設定新的寫入器並返回先前的寫入器。

property storage

回放緩衝區的儲存。

儲存必須是 Storage 的例項。

property write_count

透過 add 和 extend 操作寫入緩衝區中的專案總數。

property writer

回放緩衝區的寫入器。

寫入器必須是 Writer 的例項。

文件

訪問 PyTorch 的全面開發者文件

檢視文件

教程

獲取針對初學者和高階開發者的深度教程

檢視教程

資源

查詢開發資源並獲得問題解答

檢視資源