快捷方式

MinariExperienceReplay

class torchrl.data.datasets.MinariExperienceReplay(dataset_id, batch_size: int, *, root: str | Path | None = None, download: bool | str = True, sampler: Sampler | None = None, writer: Writer | None =None, collate_fn: Callable | None = None, pin_memory: bool = False, prefetch: int | None = None, transform: 'torchrl.envs.Transform' | None = None, split_trajs: bool = False)[source]

Minari 回放經驗資料集。

在 Minari 官方網站了解更多資訊:https://minari.farama.org/

資料格式遵循 TED 約定

引數:
  • dataset_id (str) – 要下載的資料集。必須是 MinariExperienceReplay.available_datasets 的一部分。

  • batch_size (int) – 取樣時使用的批次大小。如有必要,可以透過 data.sample(batch_size) 覆蓋。

關鍵字引數:
  • root (Pathstr, 可選) – Minari 資料集根目錄。實際的資料集記憶體對映檔案將儲存在 <root>/<dataset_id> 下。如果未提供,則預設為 ~/.cache/torchrl/atari.minari`。

  • download (boolstr, 可選) – 如果未找到資料集,是否應下載。預設為 True。也可以將 download 設定為 "force",在這種情況下將覆蓋已下載的資料。

  • sampler (Sampler, 可選) – 要使用的取樣器。如果未提供,將使用預設的 RandomSampler()。

  • writer (Writer, 可選) – 要使用的寫入器。如果未提供,將使用預設的 ImmutableDatasetWriter

  • collate_fn (callable, 可選) – 合併樣本列表以形成 Tensor(s)/輸出的小批次。在使用對映風格資料集進行批次載入時使用。

  • pin_memory (bool) – 是否應在 rb 樣本上呼叫 pin_memory()。

  • prefetch (int, 可選) – 使用多執行緒預取的下一批次的數量。

  • transform (Transform, 可選) – 呼叫 sample() 時要執行的 Transform。要連結 transforms,請使用 Compose 類。

  • split_trajs (bool, 可選) – 如果為 True,軌跡將沿第一維拆分並進行填充以使其形狀匹配。要拆分軌跡,將使用 "done" 訊號,該訊號透過 done = truncated | terminated 恢復。換句話說,假定任何 truncatedterminated 訊號都等同於軌跡的結束。預設為 False

變數:

available_datasets – 可下載的可用資料集列表。

注意

文字資料目前從包裝的資料集中丟棄,因為 PyTorch 沒有原生方式表示文字資料。如果需要此功能,請在 TorchRL 的 GitHub 倉庫上提交一個 issue。

示例

>>> from torchrl.data.datasets.minari_data import MinariExperienceReplay
>>> data = MinariExperienceReplay("door-human-v1", batch_size=32, download="force")
>>> for sample in data:
...     torchrl_logger.info(sample)
...     break
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([32, 28]), device=cpu, dtype=torch.float32, is_shared=False),
        index: Tensor(shape=torch.Size([32]), device=cpu, dtype=torch.int64, is_shared=False),
        info: TensorDict(
            fields={
                success: Tensor(shape=torch.Size([32]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([32]),
            device=cpu,
            is_shared=False),
        next: TensorDict(
            fields={
                done: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                info: TensorDict(
                    fields={
                        success: Tensor(shape=torch.Size([32]), device=cpu, dtype=torch.bool, is_shared=False)},
                    batch_size=torch.Size([32]),
                    device=cpu,
                    is_shared=False),
                observation: Tensor(shape=torch.Size([32, 39]), device=cpu, dtype=torch.float64, is_shared=False),
                reward: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.float64, is_shared=False),
                state: TensorDict(
                    fields={
                        door_body_pos: Tensor(shape=torch.Size([32, 3]), device=cpu, dtype=torch.float64, is_shared=False),
                        qpos: Tensor(shape=torch.Size([32, 30]), device=cpu, dtype=torch.float64, is_shared=False),
                        qvel: Tensor(shape=torch.Size([32, 30]), device=cpu, dtype=torch.float64, is_shared=False)},
                    batch_size=torch.Size([32]),
                    device=cpu,
                    is_shared=False),
                terminated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                truncated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([32]),
            device=cpu,
            is_shared=False),
        observation: Tensor(shape=torch.Size([32, 39]), device=cpu, dtype=torch.float64, is_shared=False),
        state: TensorDict(
            fields={
                door_body_pos: Tensor(shape=torch.Size([32, 3]), device=cpu, dtype=torch.float64, is_shared=False),
                qpos: Tensor(shape=torch.Size([32, 30]), device=cpu, dtype=torch.float64, is_shared=False),
                qvel: Tensor(shape=torch.Size([32, 30]), device=cpu, dtype=torch.float64, is_shared=False)},
            batch_size=torch.Size([32]),
            device=cpu,
            is_shared=False)},
    batch_size=torch.Size([32]),
    device=cpu,
    is_shared=False)
add(data: TensorDictBase) int

向回放緩衝區新增單個元素。

引數:

data (Any) – 要新增到回放緩衝區的資料

返回:

資料在回放緩衝區中的索引。

append_transform(transform: Transform, *, invert: bool = False) ReplayBuffer

在末尾新增 transform。

呼叫 sample 時,transform 將按順序應用。

引數:

transform (Transform) – 要新增的 transform

關鍵字引數:

invert (bool, 可選) – 如果為 True,transform 將被反轉(寫入時呼叫 forward,讀取時呼叫 inverse)。預設為 False

示例

>>> rb = ReplayBuffer(storage=LazyMemmapStorage(10), batch_size=4)
>>> data = TensorDict({"a": torch.zeros(10)}, [10])
>>> def t(data):
...     data += 1
...     return data
>>> rb.append_transform(t, invert=True)
>>> rb.extend(data)
>>> assert (data == 1).all()
property data_path: Path

資料集的路徑,包含 split。

property data_path_root: Path

資料集根目錄的路徑。

delete()

從磁碟刪除資料集儲存。

dump(*args, **kwargs)

dumps() 的別名。

dumps(path)

將回放緩衝區儲存到磁碟上的指定路徑。

引數:

path (Pathstr) – 儲存回放緩衝區的路徑。

示例

>>> import tempfile
>>> import tqdm
>>> from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer
>>> from torchrl.data.replay_buffers.samplers import PrioritizedSampler, RandomSampler
>>> import torch
>>> from tensordict import TensorDict
>>> # Build and populate the replay buffer
>>> S = 1_000_000
>>> sampler = PrioritizedSampler(S, 1.1, 1.0)
>>> # sampler = RandomSampler()
>>> storage = LazyMemmapStorage(S)
>>> rb = TensorDictReplayBuffer(storage=storage, sampler=sampler)
>>>
>>> for _ in tqdm.tqdm(range(100)):
...     td = TensorDict({"obs": torch.randn(100, 3, 4), "next": {"obs": torch.randn(100, 3, 4)}, "td_error": torch.rand(100)}, [100])
...     rb.extend(td)
...     sample = rb.sample(32)
...     rb.update_tensordict_priority(sample)
>>> # save and load the buffer
>>> with tempfile.TemporaryDirectory() as tmpdir:
...     rb.dumps(tmpdir)
...
...     sampler = PrioritizedSampler(S, 1.1, 1.0)
...     # sampler = RandomSampler()
...     storage = LazyMemmapStorage(S)
...     rb_load = TensorDictReplayBuffer(storage=storage, sampler=sampler)
...     rb_load.loads(tmpdir)
...     assert len(rb) == len(rb_load)
empty()

清空回放緩衝區並將游標重置為 0。

extend(tensordicts: TensorDictBase) Tensor

使用 iterable 中包含的一個或多個元素擴充套件回放緩衝區。

如果存在,將呼叫 inverse transforms。

引數:

data (iterable) – 要新增到回放緩衝區的資料集合。

返回:

新增到回放緩衝區的資料的索引。

警告

處理值列表時,extend() 的簽名可能含糊不清,它們應被解釋為 PyTree(在這種情況下,列表中的所有元素將被放入儲存中儲存的 PyTree 的一個切片中),或者是一個要逐個新增的值列表。為了解決這個問題,TorchRL 對 list 和 tuple 進行了明確區分:tuple 將被視為 PyTree,list(在根級別)將被解釋為要逐個新增到緩衝區的值棧。對於 ListStorage 例項,只能提供未繫結的元素(不能是 PyTree)。

insert_transform(index: int, transform: Transform, *, invert: bool = False) ReplayBuffer

插入 transform。

呼叫 sample 時,transform 按順序執行。

引數:
  • index (int) – 插入 transform 的位置。

  • transform (Transform) – 要新增的 transform

關鍵字引數:

invert (bool, 可選) – 如果為 True,transform 將被反轉(寫入時呼叫 forward,讀取時呼叫 inverse)。預設為 False

load(*args, **kwargs)

loads() 的別名。

loads(path)

在給定路徑載入回放緩衝區狀態。

緩衝區應具有匹配的元件,並且使用 dumps() 儲存。

引數:

path (Pathstr) – 回放緩衝區儲存的路徑。

有關更多資訊,請參見 dumps()

preprocess(fn: Callable[[TensorDictBase], TensorDictBase], dim: int = 0, num_workers: int | None = None, *, chunksize: int | None = None, num_chunks: int | None = None, pool: mp.Pool | None = None, generator: torch.Generator | None = None, max_tasks_per_child: int | None = None, worker_threads: int = 1, index_with_generator: bool = False, pbar: bool = False, mp_start_method: str | None = None, num_frames: int | None = None, dest: str | Path) TensorStorage

預處理資料集並返回包含格式化資料的新儲存。

資料 transform 必須是單一的(作用於資料集的單個樣本)。

引數和關鍵字引數被轉發到 map()

資料集隨後可以使用 delete() 刪除。

關鍵字引數:
  • dest (path等效) – 新資料集的位置路徑。

  • num_frames (int, 可選) – 如果提供,將只轉換前 num_frames 個數據。這對於首先除錯 transform 很有用。

返回:一個用於 ReplayBuffer 例項的新儲存。

示例

>>> from torchrl.data.datasets import MinariExperienceReplay
>>>
>>> data = MinariExperienceReplay(
...     list(MinariExperienceReplay.available_datasets)[0],
...     batch_size=32
...     )
>>> print(data)
MinariExperienceReplay(
    storages=TensorStorage(TensorDict(
        fields={
            action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True),
            episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True),
            info: TensorDict(
                fields={
                    distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                    qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True),
                    qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True),
                    reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True),
                    x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)},
                batch_size=torch.Size([1000000]),
                device=cpu,
                is_shared=False),
            next: TensorDict(
                fields={
                    done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                    info: TensorDict(
                        fields={
                            distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                            qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True),
                            qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True),
                            reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True),
                            x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)},
                        batch_size=torch.Size([1000000]),
                        device=cpu,
                        is_shared=False),
                    observation: TensorDict(
                        fields={
                            achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                            desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                            observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)},
                        batch_size=torch.Size([1000000]),
                        device=cpu,
                        is_shared=False),
                    reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True),
                    terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                    truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)},
                batch_size=torch.Size([1000000]),
                device=cpu,
                is_shared=False),
            observation: TensorDict(
                fields={
                    achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                    desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                    observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)},
                batch_size=torch.Size([1000000]),
                device=cpu,
                is_shared=False)},
        batch_size=torch.Size([1000000]),
        device=cpu,
        is_shared=False)),
    samplers=RandomSampler,
    writers=ImmutableDatasetWriter(),
batch_size=32,
transform=Compose(
),
collate_fn=<function _collate_id at 0x120e21dc0>)
>>> from torchrl.envs import CatTensors, Compose
>>> from tempfile import TemporaryDirectory
>>>
>>> cat_tensors = CatTensors(
...     in_keys=[("observation", "observation"), ("observation", "achieved_goal"),
...              ("observation", "desired_goal")],
...     out_key="obs"
...     )
>>> cat_next_tensors = CatTensors(
...     in_keys=[("next", "observation", "observation"),
...              ("next", "observation", "achieved_goal"),
...              ("next", "observation", "desired_goal")],
...     out_key=("next", "obs")
...     )
>>> t = Compose(cat_tensors, cat_next_tensors)
>>>
>>> def func(td):
...     td = td.select(
...         "action",
...         "episode",
...         ("next", "done"),
...         ("next", "observation"),
...         ("next", "reward"),
...         ("next", "terminated"),
...         ("next", "truncated"),
...         "observation"
...         )
...     td = t(td)
...     return td
>>> with TemporaryDirectory() as tmpdir:
...     new_storage = data.preprocess(func, num_workers=4, pbar=True, mp_start_method="fork", dest=tmpdir)
...     rb = ReplayBuffer(storage=new_storage)
...     print(rb)
ReplayBuffer(
    storage=TensorStorage(
        data=TensorDict(
            fields={
                action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True),
                episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True),
                next: TensorDict(
                    fields={
                        done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                        obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True),
                        observation: TensorDict(
                            fields={
                            },
                            batch_size=torch.Size([1000000]),
                            device=cpu,
                            is_shared=False),
                        reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True),
                        terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                        truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)},
                    batch_size=torch.Size([1000000]),
                    device=cpu,
                    is_shared=False),
                obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True),
                observation: TensorDict(
                    fields={
                    },
                    batch_size=torch.Size([1000000]),
                    device=cpu,
                    is_shared=False)},
            batch_size=torch.Size([1000000]),
            device=cpu,
            is_shared=False),
        shape=torch.Size([1000000]),
        len=1000000,
        max_size=1000000),
    sampler=RandomSampler(),
    writer=RoundRobinWriter(cursor=0, full_storage=True),
    batch_size=None,
    collate_fn=<function _collate_id at 0x168406fc0>)
register_load_hook(hook: Callable[[Any], Any])

為儲存註冊一個載入鉤子。

注意

鉤子當前在儲存回放緩衝區時不會被序列化:每次建立緩衝區時必須手動重新初始化它們。

register_save_hook(hook: Callable[[Any], Any])

為儲存註冊一個儲存鉤子。

注意

鉤子當前在儲存回放緩衝區時不會被序列化:每次建立緩衝區時必須手動重新初始化它們。

sample(batch_size: int | None = None, return_info: bool = False, include_info: bool = None) TensorDictBase

從回放緩衝區取樣一批資料。

使用 Sampler 取樣索引,並從 Storage 中檢索它們。

引數:
  • batch_size (int, 可選) – 要收集的資料大小。如果未提供,此方法將按照取樣器指示的批次大小進行取樣。

  • return_info (bool) – 是否返回資訊。如果為 True,結果是元組 (data, info)。如果為 False,結果是資料。

返回:

一個包含在回放緩衝區中選擇的一批資料的 tensordict。如果設定了 return_info 標誌為 True,則返回一個包含此 tensordict 和 info 的元組。

property sampler

回放緩衝區的取樣器。

取樣器必須是 Sampler 的例項。

save(*args, **kwargs)

dumps() 的別名。

set_sampler(sampler: Sampler)

在回放緩衝區設定一個新的取樣器並返回之前的取樣器。

set_storage(storage: Storage, collate_fn: Callable | None = None)

在回放緩衝區設定一個新的儲存並返回之前的儲存。

引數:
  • storage (Storage) – 緩衝區的新儲存。

  • collate_fn (callable, 可選) – 如果提供,collate_fn 將設定為此值。否則,它將重置為預設值。

set_writer(writer: Writer)

設定回放緩衝區中的新寫入器並返回先前的寫入器。

property storage

回放緩衝區的儲存。

儲存必須是 Storage 的例項。

property write_count

透過 add 和 extend 方法寫入緩衝區中的專案總數。

property writer

回放緩衝區的寫入器。

寫入器必須是 Writer 的例項。

文件

查閱 PyTorch 全面的開發者文件

查閱文件

教程

獲取面向初學者和高階開發者的深度教程

查閱教程

資源

查詢開發資源並獲得疑問解答

查閱資源