• 教程 >
  • 可選:資料並行
快捷方式

可選:資料並行

創建於:2017 年 11 月 14 日 | 最後更新:2018 年 11 月 19 日 | 最後驗證:2024 年 11 月 05 日

作者Sung KimJenny Kang

在本教程中,我們將學習如何使用 DataParallel 使用多個 GPU。

使用 PyTorch 使用 GPU 非常容易。你可以將模型放在 GPU 上

然後,你可以將所有張量複製到 GPU

mytensor = my_tensor.to(device)

請注意,僅僅呼叫 my_tensor.to(device) 會在 GPU 上返回 my_tensor 的一個新副本,而不是重寫 my_tensor。你需要將其賦值給一個新的張量並在 GPU 上使用該張量。

在多個 GPU 上執行前向傳播和反向傳播是很自然的。然而,PyTorch 預設只會使用一個 GPU。你可以透過使用 DataParallel 使模型並行執行,輕鬆地在多個 GPU 上執行你的操作。

這是本教程的核心思想。我們將在下面更詳細地探討它。

匯入和引數

匯入 PyTorch 模組並定義引數。

import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

# Parameters and DataLoaders
input_size = 5
output_size = 2

batch_size = 30
data_size = 100

裝置

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

虛擬資料集

建立一個虛擬(隨機)資料集。你只需要實現 getitem 方法

class RandomDataset(Dataset):

    def __init__(self, size, length):
        self.len = length
        self.data = torch.randn(length, size)

    def __getitem__(self, index):
        return self.data[index]

    def __len__(self):
        return self.len

rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),
                         batch_size=batch_size, shuffle=True)

簡單模型

對於這個演示,我們的模型只接收輸入,執行線性運算,並給出輸出。然而,你可以在任何模型(CNN、RNN、膠囊網路等)上使用 DataParallel

我們在模型內部放置了一個 print 語句來監控輸入和輸出張量的大小。請注意在 batch rank 0 處列印的內容。

class Model(nn.Module):
    # Our model

    def __init__(self, input_size, output_size):
        super(Model, self).__init__()
        self.fc = nn.Linear(input_size, output_size)

    def forward(self, input):
        output = self.fc(input)
        print("\tIn Model: input size", input.size(),
              "output size", output.size())

        return output

建立模型和 DataParallel

這是本教程的核心部分。首先,我們需要建立一個模型例項並檢查是否有多個 GPU。如果擁有多個 GPU,我們可以使用 nn.DataParallel 包裝我們的模型。然後我們可以透過 model.to(device) 將模型放到 GPU 上。

model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:
  print("Let's use", torch.cuda.device_count(), "GPUs!")
  # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
  model = nn.DataParallel(model)

model.to(device)
Let's use 4 GPUs!

DataParallel(
  (module): Model(
    (fc): Linear(in_features=5, out_features=2, bias=True)
  )
)

執行模型

現在我們可以看到輸入和輸出張量的大小。

for data in rand_loader:
    input = data.to(device)
    output = model(input)
    print("Outside: input size", input.size(),
          "output_size", output.size())
        In Model: input size torch.Size([6, 5]) output size torch.Size([6, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
/var/lib/ci-user/.local/lib/python3.10/site-packages/torch/nn/modules/linear.py:125: UserWarning:

Attempting to run cuBLAS, but there was no current CUDA context! Attempting to set the primary context... (Triggered internally at /pytorch/aten/src/ATen/cuda/CublasHandlePool.cpp:181.)

        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
        In Model: input size torch.Size([6, 5]) output size torch.Size([6, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
        In Model: input size torch.Size([6, 5]) output size torch.Size([6, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([3, 5]) output size torch.Size([3, 2])
        In Model: input size torch.Size([3, 5]) output size torch.Size([3, 2])
        In Model: input size torch.Size([3, 5]) output size torch.Size([3, 2])
        In Model: input size torch.Size([1, 5]) output size torch.Size([1, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

結果

如果你沒有 GPU 或只有一個 GPU,當我們批次處理 30 個輸入和 30 個輸出時,模型接收 30 個輸入並輸出 30 個結果,正如預期。但是如果你有多個 GPU,那麼你可能會得到這樣的結果。

2 個 GPU

如果你有 2 個 GPU,你會看到

# on 2 GPUs
Let's use 2 GPUs!
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
    In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

3 個 GPU

如果你有 3 個 GPU,你會看到

Let's use 3 GPUs!
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

8 個 GPU

如果你有 8 個 GPU,你會看到

Let's use 8 GPUs!
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

總結

DataParallel 會自動分割你的資料,並將任務傳送到多個 GPU 上的多個模型。每個模型完成任務後,DataParallel 會收集併合並結果,然後返回給你。

欲瞭解更多資訊,請查閱 https://pytorch.com.tw/tutorials/beginner/former_torchies/parallelism_tutorial.html

指令碼總執行時間: ( 0 分 1.798 秒)

畫廊由 Sphinx-Gallery 生成


評價本教程

© 版權所有 2024,PyTorch。

使用 Sphinx 構建,主題由 Read the Docs 提供。

文件

查閱 PyTorch 全面開發者文件

檢視文件

教程

獲取面向初學者和高階開發者的深入教程

檢視教程

資源

查詢開發資源並獲得問題解答

檢視資源