注意
點選 此處 下載完整的示例程式碼
使用 NVDEC 加速影片解碼¶
作者: Moto Hira
本教程展示瞭如何將 NVIDIA 的硬體影片解碼器 (NVDEC) 與 TorchAudio 一起使用,以及它如何提高影片解碼效能。
import torch
import torchaudio
print(torch.__version__)
print(torchaudio.__version__)
2.7.0
2.7.0
import os
import time
import matplotlib.pyplot as plt
from torchaudio.io import StreamReader
檢查先決條件¶
首先,我們檢查 TorchAudio 是否正確檢測到支援硬體解碼器/編碼器的 FFmpeg 庫。
from torchaudio.utils import ffmpeg_utils
FFmpeg Library versions:
libavcodec: 60.3.100
libavdevice: 60.1.100
libavfilter: 9.3.100
libavformat: 60.3.100
libavutil: 58.2.100
Available NVDEC Decoders:
- av1_cuvid
- h264_cuvid
- hevc_cuvid
- mjpeg_cuvid
- mpeg1_cuvid
- mpeg2_cuvid
- mpeg4_cuvid
- vc1_cuvid
- vp8_cuvid
- vp9_cuvid
print("Avaialbe GPU:")
print(torch.cuda.get_device_properties(0))
Avaialbe GPU:
_CudaDeviceProperties(name='NVIDIA A10G', major=8, minor=6, total_memory=22502MB, multi_processor_count=80, uuid=3a6a8555-efc9-d0dc-972b-36624af6fad8, L2_cache_size=6MB)
我們將使用具有以下屬性的影片;
編解碼器: H.264
解析度: 960x540
幀率: 29.97
畫素格式: YUV420P
src = torchaudio.utils.download_asset(
"tutorial-assets/stream-api/NASAs_Most_Scientifically_Complex_Space_Observatory_Requires_Precision-MP4_small.mp4"
)
0%| | 0.00/31.8M [00:00<?, ?B/s]
100%|##########| 31.8M/31.8M [00:00<00:00, 545MB/s]
使用 NVDEC 解碼影片¶
要使用硬體影片解碼器,您需要在定義輸出影片流時,透過將 decoder 選項傳遞給 add_video_stream() 方法來指定硬體解碼器。
s = StreamReader(src)
s.add_video_stream(5, decoder="h264_cuvid")
s.fill_buffer()
(video,) = s.pop_chunks()
影片幀將被解碼並以 NCHW 格式的張量返回。
print(video.shape, video.dtype)
torch.Size([5, 3, 540, 960]) torch.uint8
預設情況下,解碼後的幀會發送回 CPU 記憶體,並建立 CPU 張量。
print(video.device)
cpu
透過指定 hw_accel 選項,您可以將解碼後的幀轉換為 CUDA 張量。hw_accel 選項接受字串值並將其傳遞給 torch.device。
注意
目前,hw_accel 選項與 add_basic_video_stream() 不相容。add_basic_video_stream 添加了解碼後處理,該處理是為 CPU 記憶體中的幀設計的。請使用 add_video_stream()。
s = StreamReader(src)
s.add_video_stream(5, decoder="h264_cuvid", hw_accel="cuda:0")
s.fill_buffer()
(video,) = s.pop_chunks()
print(video.shape, video.dtype, video.device)
torch.Size([5, 3, 540, 960]) torch.uint8 cuda:0
注意
當有多個 GPU 可用時,StreamReader 預設使用第一個 GPU。您可以透過提供 "gpu" 選項來更改此設定。
# Video data is sent to CUDA device 0, decoded and
# converted on the same device.
s.add_video_stream(
...,
decoder="h264_cuvid",
decoder_option={"gpu": "0"},
hw_accel="cuda:0",
)
注意
"gpu" 選項和 hw_accel 選項可以獨立指定。如果它們不匹配,解碼後的幀會自動傳輸到 hw_accell 指定的裝置。
# Video data is sent to CUDA device 0, and decoded there.
# Then it is transfered to CUDA device 1, and converted to
# CUDA tensor.
s.add_video_stream(
...,
decoder="h264_cuvid",
decoder_option={"gpu": "0"},
hw_accel="cuda:1",
)
視覺化¶
讓我們看看透過硬體解碼器解碼的幀,並將其與軟體解碼器的等效結果進行比較。
以下函式會跳轉到給定時間戳,並使用指定的解碼器解碼一幀。
def test_decode(decoder: str, seek: float):
s = StreamReader(src)
s.seek(seek)
s.add_video_stream(1, decoder=decoder)
s.fill_buffer()
(video,) = s.pop_chunks()
return video[0]
timestamps = [12, 19, 45, 131, 180]
cpu_frames = [test_decode(decoder="h264", seek=ts) for ts in timestamps]
cuda_frames = [test_decode(decoder="h264_cuvid", seek=ts) for ts in timestamps]
注意
目前,硬體解碼器不支援色彩空間轉換。解碼後的幀是 YUV 格式。以下函式執行 YUV 到 RGB 轉換(並進行軸混洗以用於繪圖)。
def yuv_to_rgb(frames):
frames = frames.cpu().to(torch.float)
y = frames[..., 0, :, :]
u = frames[..., 1, :, :]
v = frames[..., 2, :, :]
y /= 255
u = u / 255 - 0.5
v = v / 255 - 0.5
r = y + 1.14 * v
g = y + -0.396 * u - 0.581 * v
b = y + 2.029 * u
rgb = torch.stack([r, g, b], -1)
rgb = (rgb * 255).clamp(0, 255).to(torch.uint8)
return rgb.numpy()
現在我們視覺化結果。
def plot():
n_rows = len(timestamps)
fig, axes = plt.subplots(n_rows, 2, figsize=[12.8, 16.0])
for i in range(n_rows):
axes[i][0].imshow(yuv_to_rgb(cpu_frames[i]))
axes[i][1].imshow(yuv_to_rgb(cuda_frames[i]))
axes[0][0].set_title("Software decoder")
axes[0][1].set_title("HW decoder")
plt.setp(axes, xticks=[], yticks=[])
plt.tight_layout()
plot()

在作者看來,它們是無法區分的。如果您發現任何不同之處,請隨時告知我們。 :)
硬體縮放和裁剪¶
您可以使用 decoder_option 引數來提供特定於解碼器的選項。
以下選項在預處理中通常是相關的。
resize: 將幀縮放到(width)x(height)。crop: 裁剪幀(top)x(bottom)x(left)x(right)。請注意,指定的值是移除的行/列數量。最終影像大小為(width - left - right)x(height - top -bottom)。如果同時使用crop和resize選項,將首先執行crop。
有關其他可用選項,請執行 ffmpeg -h decoder=h264_cuvid。
def test_options(option):
s = StreamReader(src)
s.seek(87)
s.add_video_stream(1, decoder="h264_cuvid", hw_accel="cuda:0", decoder_option=option)
s.fill_buffer()
(video,) = s.pop_chunks()
print(f"Option: {option}:\t{video.shape}")
return video[0]
original = test_options(option=None)
resized = test_options(option={"resize": "480x270"})
cropped = test_options(option={"crop": "135x135x240x240"})
cropped_and_resized = test_options(option={"crop": "135x135x240x240", "resize": "640x360"})
Option: None: torch.Size([1, 3, 540, 960])
Option: {'resize': '480x270'}: torch.Size([1, 3, 270, 480])
Option: {'crop': '135x135x240x240'}: torch.Size([1, 3, 270, 480])
Option: {'crop': '135x135x240x240', 'resize': '640x360'}: torch.Size([1, 3, 360, 640])
def plot():
fig, axes = plt.subplots(2, 2, figsize=[12.8, 9.6])
axes[0][0].imshow(yuv_to_rgb(original))
axes[0][1].imshow(yuv_to_rgb(resized))
axes[1][0].imshow(yuv_to_rgb(cropped))
axes[1][1].imshow(yuv_to_rgb(cropped_and_resized))
axes[0][0].set_title("Original")
axes[0][1].set_title("Resized")
axes[1][0].set_title("Cropped")
axes[1][1].set_title("Cropped and resized")
plt.tight_layout()
return fig
plot()

<Figure size 1280x960 with 4 Axes>
比較縮放方法¶
與軟體縮放不同,NVDEC 不提供選擇縮放演算法的選項。在 ML 應用中,通常需要構建具有相似數值特性的預處理管道。因此,在這裡我們比較硬體縮放與不同演算法的軟體縮放結果。
我們將使用以下影片,其中包含使用以下命令生成的測試模式。
ffmpeg -y -f lavfi -t 12.05 -i mptestsrc -movflags +faststart mptestsrc.mp4
test_src = torchaudio.utils.download_asset("tutorial-assets/mptestsrc.mp4")
0%| | 0.00/232k [00:00<?, ?B/s]
100%|##########| 232k/232k [00:00<00:00, 41.6MB/s]
以下函式解碼影片並應用指定的縮放演算法。
def decode_resize_ffmpeg(mode, height, width, seek):
filter_desc = None if mode is None else f"scale={width}:{height}:sws_flags={mode}"
s = StreamReader(test_src)
s.add_video_stream(1, filter_desc=filter_desc)
s.seek(seek)
s.fill_buffer()
(chunk,) = s.pop_chunks()
return chunk
以下函式使用硬體解碼器解碼影片並縮放。
def decode_resize_cuvid(height, width, seek):
s = StreamReader(test_src)
s.add_video_stream(1, decoder="h264_cuvid", decoder_option={"resize": f"{width}x{height}"}, hw_accel="cuda:0")
s.seek(seek)
s.fill_buffer()
(chunk,) = s.pop_chunks()
return chunk.cpu()
現在我們執行它們並可視化結果幀。
params = {"height": 224, "width": 224, "seek": 3}
frames = [
decode_resize_ffmpeg(None, **params),
decode_resize_ffmpeg("neighbor", **params),
decode_resize_ffmpeg("bilinear", **params),
decode_resize_ffmpeg("bicubic", **params),
decode_resize_cuvid(**params),
decode_resize_ffmpeg("spline", **params),
decode_resize_ffmpeg("lanczos:param0=1", **params),
decode_resize_ffmpeg("lanczos:param0=3", **params),
decode_resize_ffmpeg("lanczos:param0=5", **params),
]
def plot():
fig, axes = plt.subplots(3, 3, figsize=[12.8, 15.2])
for i, f in enumerate(frames):
h, w = f.shape[2:4]
f = f[..., : h // 4, : w // 4]
axes[i // 3][i % 3].imshow(yuv_to_rgb(f[0]))
axes[0][0].set_title("Original")
axes[0][1].set_title("nearest neighbor")
axes[0][2].set_title("bilinear")
axes[1][0].set_title("bicubic")
axes[1][1].set_title("NVDEC")
axes[1][2].set_title("spline")
axes[2][0].set_title("lanczos(1)")
axes[2][1].set_title("lanczos(3)")
axes[2][2].set_title("lanczos(5)")
plt.setp(axes, xticks=[], yticks=[])
plt.tight_layout()
plot()

它們都不完全相同。在作者看來,lanczos(1) 似乎與 NVDEC 最相似。雙三次插值看起來也很接近。
使用 StreamReader 效能測試 NVDEC¶
在本節中,我們比較軟體影片解碼和硬體影片解碼的效能。
解碼為 CUDA 幀¶
首先,我們比較軟體解碼器和硬體解碼器解碼同一影片所需的時間。為了使結果具有可比性,當使用軟體解碼器時,我們將結果張量移動到 CUDA。
測試過程如下
使用硬體解碼器並將資料直接放在 CUDA 上
使用軟體解碼器,生成 CPU 張量並將其移動到 CUDA。
以下函式實現了硬體解碼器測試用例。
def test_decode_cuda(src, decoder, hw_accel="cuda", frames_per_chunk=5):
s = StreamReader(src)
s.add_video_stream(frames_per_chunk, decoder=decoder, hw_accel=hw_accel)
num_frames = 0
chunk = None
t0 = time.monotonic()
for (chunk,) in s.stream():
num_frames += chunk.shape[0]
elapsed = time.monotonic() - t0
print(f" - Shape: {chunk.shape}")
fps = num_frames / elapsed
print(f" - Processed {num_frames} frames in {elapsed:.2f} seconds. ({fps:.2f} fps)")
return fps
以下函式實現了軟體解碼器測試用例。
def test_decode_cpu(src, threads, decoder=None, frames_per_chunk=5):
s = StreamReader(src)
s.add_video_stream(frames_per_chunk, decoder=decoder, decoder_option={"threads": f"{threads}"})
num_frames = 0
device = torch.device("cuda")
t0 = time.monotonic()
for i, (chunk,) in enumerate(s.stream()):
if i == 0:
print(f" - Shape: {chunk.shape}")
num_frames += chunk.shape[0]
chunk = chunk.to(device)
elapsed = time.monotonic() - t0
fps = num_frames / elapsed
print(f" - Processed {num_frames} frames in {elapsed:.2f} seconds. ({fps:.2f} fps)")
return fps
對於每種影片解析度,我們執行多個不同執行緒數的軟體解碼器測試用例。
def run_decode_tests(src, frames_per_chunk=5):
fps = []
print(f"Testing: {os.path.basename(src)}")
for threads in [1, 4, 8, 16]:
print(f"* Software decoding (num_threads={threads})")
fps.append(test_decode_cpu(src, threads))
print("* Hardware decoding")
fps.append(test_decode_cuda(src, decoder="h264_cuvid"))
return fps
現在我們使用不同解析度的影片執行測試。
QVGA¶
0%| | 0.00/1.06M [00:00<?, ?B/s]
100%|##########| 1.06M/1.06M [00:00<00:00, 147MB/s]
Testing: testsrc2_qvga.h264.mp4
* Software decoding (num_threads=1)
- Shape: torch.Size([5, 3, 240, 320])
- Processed 900 frames in 0.50 seconds. (1814.82 fps)
* Software decoding (num_threads=4)
- Shape: torch.Size([5, 3, 240, 320])
- Processed 900 frames in 0.34 seconds. (2679.88 fps)
* Software decoding (num_threads=8)
- Shape: torch.Size([5, 3, 240, 320])
- Processed 900 frames in 0.34 seconds. (2674.27 fps)
* Software decoding (num_threads=16)
- Shape: torch.Size([5, 3, 240, 320])
- Processed 895 frames in 0.43 seconds. (2088.70 fps)
* Hardware decoding
- Shape: torch.Size([5, 3, 240, 320])
- Processed 900 frames in 2.01 seconds. (447.36 fps)
VGA¶
0%| | 0.00/3.59M [00:00<?, ?B/s]
59%|#####9 | 2.12M/3.59M [00:00<00:00, 10.0MB/s]
100%|##########| 3.59M/3.59M [00:00<00:00, 16.3MB/s]
Testing: testsrc2_vga.h264.mp4
* Software decoding (num_threads=1)
- Shape: torch.Size([5, 3, 480, 640])
- Processed 900 frames in 1.20 seconds. (749.76 fps)
* Software decoding (num_threads=4)
- Shape: torch.Size([5, 3, 480, 640])
- Processed 900 frames in 0.71 seconds. (1274.24 fps)
* Software decoding (num_threads=8)
- Shape: torch.Size([5, 3, 480, 640])
- Processed 900 frames in 0.70 seconds. (1285.18 fps)
* Software decoding (num_threads=16)
- Shape: torch.Size([5, 3, 480, 640])
- Processed 895 frames in 0.64 seconds. (1402.77 fps)
* Hardware decoding
- Shape: torch.Size([5, 3, 480, 640])
- Processed 900 frames in 0.34 seconds. (2639.80 fps)
XGA¶
0%| | 0.00/9.22M [00:00<?, ?B/s]
98%|#########7| 9.00M/9.22M [00:00<00:00, 35.8MB/s]
100%|##########| 9.22M/9.22M [00:00<00:00, 36.4MB/s]
Testing: testsrc2_xga.h264.mp4
* Software decoding (num_threads=1)
- Shape: torch.Size([5, 3, 768, 1024])
- Processed 900 frames in 2.70 seconds. (333.73 fps)
* Software decoding (num_threads=4)
- Shape: torch.Size([5, 3, 768, 1024])
- Processed 900 frames in 1.38 seconds. (652.84 fps)
* Software decoding (num_threads=8)
- Shape: torch.Size([5, 3, 768, 1024])
- Processed 900 frames in 1.28 seconds. (703.55 fps)
* Software decoding (num_threads=16)
- Shape: torch.Size([5, 3, 768, 1024])
- Processed 895 frames in 1.30 seconds. (690.26 fps)
* Hardware decoding
- Shape: torch.Size([5, 3, 768, 1024])
- Processed 900 frames in 0.61 seconds. (1473.92 fps)
結果¶
現在我們繪製結果。
def plot():
fig, ax = plt.subplots(figsize=[9.6, 6.4])
for items in zip(fps_qvga, fps_vga, fps_xga, "ov^sx"):
ax.plot(items[:-1], marker=items[-1])
ax.grid(axis="both")
ax.set_xticks([0, 1, 2], ["QVGA (320x240)", "VGA (640x480)", "XGA (1024x768)"])
ax.legend(
[
"Software Decoding (threads=1)",
"Software Decoding (threads=4)",
"Software Decoding (threads=8)",
"Software Decoding (threads=16)",
"Hardware Decoding (CUDA Tensor)",
]
)
ax.set_title("Speed of processing video frames")
ax.set_ylabel("Frames per second")
plt.tight_layout()
plot()

我們觀察到以下幾點
增加軟體解碼的執行緒數可以加快管道速度,但效能在大約 8 個執行緒時趨於飽和。
使用硬體解碼器帶來的效能提升取決於影片的解析度。
在 QVGA 等較低解析度下,硬體解碼慢於軟體解碼
在 XGA 等較高解析度下,硬體解碼快於軟體解碼。
值得注意的是,效能提升還取決於 GPU 的型別。我們觀察到,當使用 V100 或 A100 GPU 解碼 VGA 影片時,硬體解碼器比軟體解碼器慢。但使用 A10 GPU 硬體解碼器則比軟體解碼器快。
解碼並縮放¶
接下來,我們向管道中新增縮放操作。我們將比較以下管道。
使用軟體解碼器解碼影片,並將幀作為 PyTorch 張量讀取。使用
torch.nn.functional.interpolate()縮放張量,然後將結果張量傳送到 CUDA 裝置。使用軟體解碼器解碼影片,使用 FFmpeg 的 filter graph 縮放幀,將縮放後的幀作為 PyTorch 張量讀取,然後將其傳送到 CUDA 裝置。
使用硬體解碼器同時解碼和縮放影片,將結果幀作為 CUDA 張量讀取。
管道 1 代表常見的影片載入實現。
管道 2 使用 FFmpeg 的 filter graph,它允許在將原始幀轉換為張量之前對其進行處理。
管道 3 將從 CPU 到 CUDA 的資料傳輸量降至最低,這顯著有助於實現高效能資料載入。
以下函式實現了管道 1。它使用 PyTorch 的 torch.nn.functional.interpolate()。我們使用 bincubic 模式,因為我們看到結果幀與 NVDEC 縮放最接近。
def test_decode_then_resize(src, height, width, mode="bicubic", frames_per_chunk=5):
s = StreamReader(src)
s.add_video_stream(frames_per_chunk, decoder_option={"threads": "8"})
num_frames = 0
device = torch.device("cuda")
chunk = None
t0 = time.monotonic()
for (chunk,) in s.stream():
num_frames += chunk.shape[0]
chunk = torch.nn.functional.interpolate(chunk, [height, width], mode=mode, antialias=True)
chunk = chunk.to(device)
elapsed = time.monotonic() - t0
fps = num_frames / elapsed
print(f" - Shape: {chunk.shape}")
print(f" - Processed {num_frames} frames in {elapsed:.2f} seconds. ({fps:.2f} fps)")
return fps
以下函式實現了管道 2。幀作為解碼過程的一部分進行縮放,然後傳送到 CUDA 裝置。
我們使用 bincubic 模式,以使結果與上面的基於 PyTorch 的實現具有可比性。
def test_decode_and_resize(src, height, width, mode="bicubic", frames_per_chunk=5):
s = StreamReader(src)
s.add_video_stream(
frames_per_chunk, filter_desc=f"scale={width}:{height}:sws_flags={mode}", decoder_option={"threads": "8"}
)
num_frames = 0
device = torch.device("cuda")
chunk = None
t0 = time.monotonic()
for (chunk,) in s.stream():
num_frames += chunk.shape[0]
chunk = chunk.to(device)
elapsed = time.monotonic() - t0
fps = num_frames / elapsed
print(f" - Shape: {chunk.shape}")
print(f" - Processed {num_frames} frames in {elapsed:.2f} seconds. ({fps:.2f} fps)")
return fps
以下函式實現了管道 3。縮放由 NVDEC 執行,結果張量放置在 CUDA 記憶體中。
def test_hw_decode_and_resize(src, decoder, decoder_option, hw_accel="cuda", frames_per_chunk=5):
s = StreamReader(src)
s.add_video_stream(5, decoder=decoder, decoder_option=decoder_option, hw_accel=hw_accel)
num_frames = 0
chunk = None
t0 = time.monotonic()
for (chunk,) in s.stream():
num_frames += chunk.shape[0]
elapsed = time.monotonic() - t0
fps = num_frames / elapsed
print(f" - Shape: {chunk.shape}")
print(f" - Processed {num_frames} frames in {elapsed:.2f} seconds. ({fps:.2f} fps)")
return fps
以下函式對給定源執行效能測試函式。
def run_resize_tests(src):
print(f"Testing: {os.path.basename(src)}")
height, width = 224, 224
print("* Software decoding with PyTorch interpolate")
cpu_resize1 = test_decode_then_resize(src, height=height, width=width)
print("* Software decoding with FFmpeg scale")
cpu_resize2 = test_decode_and_resize(src, height=height, width=width)
print("* Hardware decoding with resize")
cuda_resize = test_hw_decode_and_resize(src, decoder="h264_cuvid", decoder_option={"resize": f"{width}x{height}"})
return [cpu_resize1, cpu_resize2, cuda_resize]
現在我們執行測試。
QVGA¶
Testing: testsrc2_qvga.h264.mp4
* Software decoding with PyTorch interpolate
- Shape: torch.Size([5, 3, 224, 224])
- Processed 900 frames in 0.61 seconds. (1486.29 fps)
* Software decoding with FFmpeg scale
- Shape: torch.Size([5, 3, 224, 224])
- Processed 900 frames in 0.40 seconds. (2229.01 fps)
* Hardware decoding with resize
- Shape: torch.Size([5, 3, 224, 224])
- Processed 900 frames in 2.02 seconds. (444.56 fps)
VGA¶
Testing: testsrc2_vga.h264.mp4
* Software decoding with PyTorch interpolate
- Shape: torch.Size([5, 3, 224, 224])
- Processed 900 frames in 1.45 seconds. (620.26 fps)
* Software decoding with FFmpeg scale
- Shape: torch.Size([5, 3, 224, 224])
- Processed 900 frames in 0.69 seconds. (1300.24 fps)
* Hardware decoding with resize
- Shape: torch.Size([5, 3, 224, 224])
- Processed 900 frames in 0.34 seconds. (2653.73 fps)
XGA¶
Testing: testsrc2_xga.h264.mp4
* Software decoding with PyTorch interpolate
- Shape: torch.Size([5, 3, 224, 224])
- Processed 900 frames in 2.69 seconds. (334.90 fps)
* Software decoding with FFmpeg scale
- Shape: torch.Size([5, 3, 224, 224])
- Processed 900 frames in 1.06 seconds. (850.30 fps)
* Hardware decoding with resize
- Shape: torch.Size([5, 3, 224, 224])
- Processed 900 frames in 0.61 seconds. (1476.55 fps)
結果¶
現在我們繪製結果。
def plot():
fig, ax = plt.subplots(figsize=[9.6, 6.4])
for items in zip(fps_qvga, fps_vga, fps_xga, "ov^sx"):
ax.plot(items[:-1], marker=items[-1])
ax.grid(axis="both")
ax.set_xticks([0, 1, 2], ["QVGA (320x240)", "VGA (640x480)", "XGA (1024x768)"])
ax.legend(
[
"Software decoding\nwith resize\n(PyTorch interpolate)",
"Software decoding\nwith resize\n(FFmpeg scale)",
"NVDEC\nwith resizing",
]
)
ax.set_title("Speed of processing video frames")
ax.set_xlabel("Input video resolution")
ax.set_ylabel("Frames per second")
plt.tight_layout()
plot()

硬體解碼器顯示出與之前實驗相似的趨勢。事實上,效能幾乎相同。硬體縮放對幀進行縮小几乎沒有開銷。
軟體解碼也顯示出相似的趨勢。將縮放作為解碼過程的一部分執行速度更快。一種可能的解釋是,影片幀內部儲存為 YUV420P,其畫素數是 RGB24 或 YUV444P 的一半。這意味著如果在將幀資料複製到 PyTorch 張量之前進行縮放,則操作和複製的畫素數量小於在幀轉換為張量後應用縮放的情況。
標籤: torchaudio.io
指令碼總執行時間: ( 0 分 31.872 秒)